
Training Solutions for Scorep/Scalasca/Cube

Solutions
Exercise 1: Detecting the focus of analysis (FOA)

a) Set MPIF77=scorep mpif77 in config/make.def. We compiled the application with the
following parameters: make bt-mz CLASS=W NPROCS=4

b) The profile was generated with the following call:
OMP NUM THREADS=1 scan -s -e scorep sum W 1t mpiexec -np 4 bt-mz W.4

c) The results are stored in the directory scorep sum W 1t. Open the generated profile
with square scorep sum W 1t. Most of the execution time of the application is spent in
the functions x solve, y solve, z solve and their subfunctions with correspondingly
24.23%, 24.38% and 28.02% of the execution time.

Figure 1: FOA of the application (Cube)

1



Training Solutions for Scorep/Scalasca/Cube

d) The application spends 82.2% of the execution time in computation and 17.7% in MPI
operations.

Figure 2: Time share of computation and MPI operations (Cube)

e) In the flat view after sorting by exclusive value you can see, that functions binvcrhs,
matmul sub, matvev sub and do-loops in x solve, y solve, z solve consume most
exclusive execution time.

Figure 3: Hotspot functions of the application (Cube)

2



Training Solutions for Scorep/Scalasca/Cube

Exercise 2: MPI Communication and OpenMP Synchronization

a) 11.10% of the execution time of the application is spent for MPI communication (see
Figure 4). Almost all the time is consumed in the MPI Waitall operation (10.66%). In
this time the unblocked data transfer run and the processes waited for each other at the
end of the transfer until all processes became their data.
The communication load balance among processes is 83%. All processes spend almost
the same time in MPI Waitall. Observation of trace time line of the application can help
better understand the behavior of processes.
Only one thread was running for this profile, that is why only few time is spent for
OpenMP synchronization, which actually is overhead of the parallel region.

Figure 4: Time spent in communication (Cube)

3



Training Solutions for Scorep/Scalasca/Cube

Exercise 3: PAPI counters

b) To measure the number of executed instructions and spent cycles by processes a profile
was generated with following call:
OMP NUM THREADS=1 SCOREP METRIC PAPI=PAPI TOT CYC,PAPI TOT INS scan -s -e
scorep sum W papi 1t mpiexec -np 4 bt-mz W.4

c) INS LB = sum INS / (#processes * max INS) = 1.19e11/(4*3.12e10) = 0.95 (see Figure
5). The instructions load balance is also very good. That means the processes get almost
the same amount of work to compute.

Figure 5: Distribution of the executed instructions among processes (Cube)

d) Each function performs bad with IPC lower one (see Table 1). A deeper analysis of these
functions is needed to understand, why IPC is so low. The next step could be an analysis
of the memory and vectorization behavior of the application.

e) A profile is generated with measuring of PAPI counters PAPI L2 DCA and PAPI L2 -
DCM.
L2 cache miss ratio = L2 DCM/L2 DCA
From Table 1 you can see, that 1.3% of the second level cache accesses were missed in
FOA. This is a small value and describes an optimal L2 cache usage.

4



Training Solutions for Scorep/Scalasca/Cube

Function IPC L2 cache miss ratio
FOA 0.73 1.3%

binvcrhs 0.81 0.36%
matmul sub 0.74 0.28%
matvec sub 0.68 0.97 %

do-loop in x solve 0.72 1.1%
do-loop in y solve 0.72 1.6%
do-loop in z solve 0.71 2.4%

Table 1: Instructions per Cycle and cache miss ratio for the hotspot functions

Exercise 4: Functions filtering and creating of a Trace

a) Filter file can look so:
SCOREP REGION NAMES BEGIN
EXCLUDE lhsinit
binvrhs
exact solution
copy*
SCOREP REGION NAMES END

b) Generating a trace:
OMP NUM THREADS=1 SCOREP TOTAL MEMORY=249MB ESD BUFFER SIZE=500000
ELG BUFFER SIZE=20000000000 ELG VT MODE=1 SCOREP ENABLE TRACING=true
SCOREP FILTERING FILE=filter file.txt scan -t -e scorep trace 1t
mpiexec -np 4 bt-mz W.4

Viewing the trace with Vampir :
vampir scorep trace t1/traces.otf2

Figure 6: Timeline of the application (Vampir)

5



Training Solutions for Scorep/Scalasca/Cube

Figure 7: Function Summary of the application (Vampir)

Exercise 5: Efficiency metrics

a) The efficiency metrics were generated manually. Efficiency metrics for FOA are much
better, because there is no MPI communications in the observed FOA.

SE = max comp time / max total time on ideal network

total time on ideal network = execution time - transfer time mpi

transfer time mpi = mpi time - wait time mpi - mpi io

wait time mpi = mpi latesender + mpi latereceiver + mpi earlyreduce +
+ mpi earlyscan + mpi latebroadcast + mpi wait nxn + mpi barrier wait +
+ mpi finalize wait

TE = max total time on ideal network / max total time

max total time = max execution time

ComE = SE + TE

LB = sum comp time / (max comp time * #processes)

PE = LB * ComE

FOA Full Application
Parallel Efficiency 92% 87%

Load Balance 93% 94%
Communication Efficiency 99.99% 93%

Serialization Efficiency 99.99% 99.5%
Transfer Efficiency 100% 93%

Table 2: Time efficiencies observed in the FOA

6


