000

Training Solutions for Scorep/Scalasca/Cube

SOLUTIONS
Exercise 1: Detecting the focus of analysis (FOA)

a) Set MPIF77=scorep mpif77 in config/make.def. We compiled the application with the
following parameters: make bt-mz CLASS=W NPROCS=4

b) The profile was generated with the following call:
OMP_NUM_THREADS=1 scan -s -e scorep_sum_W_lt mpiexec -np 4 bt-mz_W.4

¢) The results are stored in the directory scorep_sum W_1t. Open the generated profile
with square scorep_sum W_1t. Most of the execution time of the application is spent in

the functions x_solve, y_solve, z_solve and their subfunctions with correspondingly
24.23%, 24.38% and 28.02% of the execution time.

, Cube-4.3.3: scorep_sum_W _1t/summary.cubex e o Bl e
File Display Plugins Help
Restore Setting ~ Save Settings

Absolute [| |Own root percent |v | |Absolute %
. Metric tree] . Call tree . Flat view | . System tree —._Ea’.;};
~| [Z/ 0.02 MAIN_ "
4.07e7 Visits (occ) + @ 6.47 mpi_setup_
+/O0 0 Bytes transferred 0.02 MP|_Bcast
+/O 0 MPI file operations +/[0.55 env_setup_
- 1.38 Computational 0.00 zone_setup_

O 0.00 Minimurm Inclus ¥
8.52 Maximum Inclu
O O ALLOCATION SIZE
[0 O DEALLOCATION_S
O 0 bytes_leaked (byt:

O 0.00 maxirmurn_hea

0.00 map_zones_
0.00 zone_starts_
0.00 set_constants
1.89 initialize_

0.24 exact_rhs_
0.00 timer_clear_
11.30 exch_gbe_
0.03 adi_

B 2.47 compute rl

+ [+
N EDEEEEEEEEE

M 0.18 add_
0.15 MPI_Barrier
0.00 timer_start_
0.00 timer_stop_
0.00 timer_read_
0.05 verify_

0.00 MPI_Reduce
0.00 print_results_
0.00 MPI_Finalize

<« CE— 3 « OEEEEEEESE——— > All (4 elements) [w
0.00 38.48 (100.00%) 38.48| [0.00 76.63 190.00f f0.00 29.48 (100.00%) 29.48

L —— | ————— L —— |

Figure 1: FOA of the application (Cube)

L]

< 2

EEEEEEEN

|:| a0 29 I_],.:. | B3%:)

Training Solutions for Scorep/Scalasca/Cube I I

d) The application spends 82.2% of the execution time in computation and 17.7% in MPI
operations.

Own root percent “

[. 1
l Metric tree

-0 0.00 Execution
B2.20 Computation
n 17.71 MPI
+ [l 0.08 OpenMP
O 0.00 Overhead
+d 0.00 Idle threads

Figure 2: Time share of computation and MPI operations (Cube)

e) In the flat view after sorting by exclusive value you can see, that functions binvcrhs,
matmul_sub, matvev_sub and do-loops in x_solve, y_solve, z_solve consume most
exclusive execution time.

Absolute ~ | |Metric selection percent w
l Metric tree l Call tree Flat view
-0 0.00 Time (sec) - 20.12 binverhs_ -
- 0.00 Execution = 15.58 matmul_sub_
= -/ 15.46 !$omp do @z_solve f:52
+/[@ 6.82 MPI 18.51 Subroutines
+/[l 0.03 OpenMP -/[d 13.23 '$omp do @y_solve f:52
O 0.00 Overhead @ 16.32 Subroutines
+0 0.00 Idle threads —/[@ 13.11 '$omp do @x_sohve.f;54
4.07e7 Visits (occ) O 16.26 Subroutines
+ 0 0 Bytes transferred (bytes) . @ 12.42 matvec_sub_ u
 CEE—— 2 © C—— 3

0.00 31.63 (82.20%) 38.48(|0.00 493.191 1D%.DD

Figure 3: Hotspot functions of the application (Cube)

Training Solutions for Scorep/Scalasca/Cube

0009

Exercise 2: MPI Communication and OpenMP Synchronization

a) 11.10% of the execution time of the application is spent for MPI communication (see
Figure 4). Almost all the time is consumed in the MPI_Waitall operation (10.66%). In
this time the unblocked data transfer run and the processes waited for each other at the
end of the transfer until all processes became their data.

The communication load balance among processes is 83%. All processes spend almost
the same time in MPI_Waitall. Observation of trace time line of the application can help
better understand the behavior of processes.

Only one thread was running for this profile, that is why only few time is spent for
OpenMP synchronization, which actually is overhead of the parallel region.

Own root percent

)
‘ Metric tree

-0 0.00 Time
-0 0.00 Execution
82.20 Computation
-0 0.00 MPI
+ @ 6.47 Management
+ [0.15 Synchronization
-0 0.00 Communication
0.44 Collective
O 0.00 One-sided
+ O 0.00 File O
-0 0.00 OpenMP
-0 0.00 Synchronization
- 0.00 Barrier
O 0.00 Explicit
0.08 Implicit
0.00 Critical

w | | Metric root percent

‘ Call tree Flat view

- -0 0.00 MAIN__
+ O 0.00 mpi_setup_
O 0.00 MPI_Bcast
0.00 env_setup_
0.00 zone_setup_
0.00 map_zones_
0.00 zone_starts_
0.00 set_constants_
0.00 initialize_
0.00 exact_rhs_
0.00 timer_clear_
.00 exch_ghc_
O 0.00 copy_x_face_
O 0.00 copy_y_face_
0.06 MPI_Isend
0.04 MPI_Irecv

+

+

+ [+

L OO0OoOoOoOooan

~v | | Absolute

[1
‘ System tree .] BoxPlot

-0 - node linuxbmc0006.r:
O 0.91 MPI Rank 0
O 1.22 MPIRank 1
0.77 MPI Rank 2
O 1.17 MPI Rank 3

Figure 4: Time spent in communication (Cube)

000

Training Solutions for Scorep/Scalasca/Cube

Exercise 3: PAPI counters

b) To measure the number of executed instructions and spent cycles by processes a profile
was generated with following call:

OMP_NUM_THREADS=1 SCOREP_METRIC_PAPI=PAPI_TOT_CYC,PAPI_TOT_INS scan -s -e
scorep_sum_W_papi_lt mpiexec -np 4 bt-mz W.4

c) INS LB = sum INS / (#processes * max INS) = 1.19e11/(4*3.12e10) = 0.95 (see Figure
5). The instructions load balance is also very good. That means the processes get almost
the same amount of work to compute.

Absolute v | | Absclute ~v | | Absolute w
l Metric tree l Call tree Flat view Il System tree] .] BoxPlot
+ @ 112.11 Time (sec) “| | -/ 5.55e6 MAIN__ - | O - machine Linux "
4.07e7 Visits (occ) +/l 1.48e9 mpi_setup_ -1 - node linuxbmcooos.rz.R
+/0 0 Bytes transferred (bytes) 5.61e6 MPI_Bcast 0 3.12e10 MPI Rank 0
+0 0 MPI file operations (occ) +/ 4.31e8 env_setup_ O 3.00e10 MPI Rank 1
+/l 4.89 Computational imbalance 8098 zone_setup_ O 2.93e10 MPI Rank 2
O 0.00 Minimum Inclusive Time | +/[l 2.64e5 map_zones_ O 2.86el0 MPI Rank 3
28.03 Maximum Inclusive Time 1.23ed zone_starts_
O 0 ALLOCATION_SIZE (bytes) 7120 set_constants_
O 0 DEALLOCATION_SIZE (bytes + 1.03e9 initialize_
O 0 bytes_leaked (bytes) +/ 1.79e8 exact_rhs_
O 0.00 maximum_heap_memor, 1.01es timer_clear_
1.98211 PAPI_TOT CYC (#) + @ 3.27el0 exch_gbe_
= —/ 2.40e7 adi_
+ [3.08e8 compute rk
L
L
L
+ M 1.27e8 add_
W Z2.95e8 MPI_Barrier
1.77ed timer_start_
7532 timer_stop_
7108 timer_read_
+/ 1.14e8 verify_
1.58e4 MPI_Reduce
4.24ed print_results_ - =
3.30e4 MPI_Finalize

< All (4 elernents) hd

<« 3 >
0 1.59211 (100.00%) 1.59el1l| |0 1.19el11(75.13%) 1.59el1| [0 1.19e11
—

Figure 5: Distribution of the executed instructions among processes (Cube)

d) Each function performs bad with IPC lower one (see Table 1). A deeper analysis of these
functions is needed to understand, why IPC is so low. The next step could be an analysis
of the memory and vectorization behavior of the application.

e) A profile is generated with measuring of PAPI counters PAPI 1.2 DCA and PAPI L2 -
DCM.
L2 cache miss ratio = L2.DCM/L2_DCA

From Table 1 you can see, that 1.3% of the second level cache accesses were missed in
FOA. This is a small value and describes an optimal L2 cache usage.

000

Training Solutions for Scorep/Scalasca/Cube

Function IPC | L2 cache miss ratio

FOA 0.73 1.3%
binverhs 0.81 0.36%
matmul_sub 0.74 0.28%

matvec_sub 0.68 0.97 %
do-loop in x_solve | 0.72 1.1%
do-loop in y_solve | 0.72 1.6%
do-loop in z_solve | 0.71 2.4%

Table 1: Instructions per Cycle and cache miss ratio for the hotspot functions

Exercise 4: Functions filtering and creating of a Trace

a) Filter file can look so:
SCOREP_REGION_NAMES BEGIN
EXCLUDE lhsinit_
binvrhs_
exact_solution_

copy*
SCOREP_REGION_NAMES_END

b) Generating a trace:

OMP_NUM_THREADS=1 SCOREP_TOTAL_MEMORY=249MB ESD_BUFFER_SIZE=500000
ELG_BUFFER_SIZE=20000000000 ELG_VT_MODE=1 SCOREP_ENABLE_TRACING=true
SCOREP_FILTERING_FILE=filter_file.txt scan -t -e scorep_trace_lt
mpiexec —np 4 bt-mz W.4

Viewing the trace with Vampir:

vampir scorep_trace_tl/traces.otf2

Timeline FE
55 30s 3.5s 4.0s 45s 5.05 55 s 6.0s

0s 0.5s 1.0s 15s 2.0s

Master thread:0
IRRRIRRI AL LR RUARLARS RAIOal 10) LD DA AN | RO LRI IRUAIRN AN (RR DG LECEEARARE I M :ERIR R (N (A0 (LR IG0LR ML\ L (R LG LA RN RN AR R (AL R EEE [
HI : : ; : : : : - - !

Master thread:1
ERARAR L (RA0IR: L (| (AR LA LRE MR AR R LEARAREREL SN LR AL 1R (AALAR M LG KRR RUREL (DML (RGN A jRNREN ML AR(ERN A O A CANIEH ARCamat A0 i) AARIKERRA AN | I HIR)
Hi : : : : ! : ! : ! !

Master thread:2

Master thread:3

Figure 6: Timeline of the application (Vampir)

000

Training Solutions for Scorep/Scalasca/Cube

Function Summary
All Processes, Accumulated Exclusive Time per Function

45 3s 2s ls Os
binverhs_ -

S 1t Sub_
'$omp do @y solve.f:52

TS ratvec sub_

i i MPI_Init_thread

MPI_Waitall

0.142 s [!$omp do @rhs.fi181

0121 s '$omp do @rhs.f:80

81.651 ms% exch_gbc_

91.202 ms [f] t3omp do @rhs.f:301

Figure 7: Function Summary of the application (Vampir)

Exercise 5: Efficiency metrics

a) The efficiency metrics were generated manually. Efficiency metrics for FOA are much
better, because there is no MPI communications in the observed FOA.

SE = max comp time / max total time on ideal network
total time on ideal network = execution time - transfer time mpi
transfer time mpi = mpi time - wait time mpi - mpi io

wait time mpi = mpi latesender + mpi latereceiver + mpi earlyreduce +
+ mpi earlyscan + mpi latebroadcast + mpi wait nxn + mpi barrier wait +
+ mpi finalize wait

TE = max total time on ideal network / max total time

max total time = max execution time

ComE = SE + TE

LB = sum comp time / (max comp time * #processes)
PE = LB * ComE
FOA | Full Application
Parallel Efficiency 92% 87%
Load Balance 93% 94%
Communication Efficiency | 99.99% 93%
Serialization Efficiency | 99.99% 99.5%
Transfer Efficiency 100% 93%

Table 2: Time efficiencies observed in the FOA

