0009

Training Documentation for Scorep/Scalasca/Cube

General information about the used benchmark

The used benchmark for this training is NPB3.3-MZ-MPI:
www.vi-hps.org/upload /material /general/NPB3.3-MZ-MPI.tar.gz

For the compilation, first modify or specify the compiler and compilation flags in
config/make.def. Use the following line to compile the application:
make benchmark CLASS=class NPROCS=number_of procs [VERSION=VEC]

The used benchmark for this training is NPB3.3-MZ-MPI:
make bt-mz CLASS=W NPROCS=4

Exercise 1: Detecting the focus of analysis (FOA)

a)

b)

e)

Instrument the application with Score-P. The compiler to use is specified in config/make.def
in the variable MPIF77.

Generate a profile for the program by executing the instrumented binary with the desired
number of processes and/or threads.

Use the Cube GUI to open the generated profile and investigate the results. Identify regions
which consume a lot of execution time and which are worth further analysis (FOA).

Find out the share of the execution time for calculation, MPI operations and OpenMP
synchronization.

Identify functions which consume the most exclusive execution time (hotspot functions).

Exercise 2: MPI Communication and OpenMP Synchronization

Some time in the application is spent for communication between processes and for synchro-
nization of threads.

a)

Identify how much time is spent for which MPI operations and OpenMP constructs. Is
this time equally distributed among processes/threads?

Exercise 3: PAPI counters

2)

b)

Identify which PAPI counter are available on your system. If PAPI is already installed,
you can see the description of each PAPI counter with papi_avail or papi native avail.

For better understanding of computation time load balance among processes/threads, you
should observe the distribution of instructions executed by processes/threads. Measure
in the next profile run the number of executed instructions and spent cycles by each
processes/threads.

Calculate the load balance of the instructions among the processes/threads.

Calculate the number of instructions per cycle (IPC) for FOA and for the hotspot func-
tions.

Measure the number of cache accesses and cache misses. Calculate the cache miss ratio
for the FOA and for the hotspot functions.

Exercise 4: Functions filtering and creating of a Trace

For most applications the trace files become very big. Usually most small functions, which
are called often, but do not consume a lot of time, need to be filtered out.

1



Training Documentation for Scorep/Scalasca/Cube l l

a) Identify which functions are called very often with scorep-score -r profile.cubex.
Create a filter file to filter these functions out.

b) Generate a trace for your application and use the specifications of the filter file. Use the
Vampir GUI to open the generated trace.

Exercise 5: Efficiency metrics and Load Balance

The efficiency metrics (Serialization Efficiency (SE), Transfer Efficiency (TE), Communica-
tion Efficiency (ComE) and Parallel Efficiency (PE)) and Load Balance (LB) can be calculated
manually or by using a help script created by JSC.

SE = max comp time / max total time on ideal network
TE = max total time on ideal network / max total time
ComE = SE + TE
LB = sum comp time / avg comp time
PE = LB * ComE

a) List the efficiency metrics and load balance in a table.

FOA | Full Application

Parallel Efficiency

Load Balance

Communication Efficiency
Serialization Efficiency
Transfer Efficiency

Table 1: Time efficiencies observed in the FOA



