
EU H2020 Centre of Excellence (CoE) 1 October 2015 – 31 March 2018

Grant Agreement No 676553

Performance Analysis: An Introduction
to the Tools and Methodology used in

the POP CoE
Jon Gibson and Wadud Miah, NAG

• Introduction to Performance Analysis and the POP CoE Methodology

• Performance Analysis Tools for Parallel Codes
• Scalasca

• The BSC Tools: Extrae and Paraver

• Coffee Break (3.00 - 3.30pm)

• Parallel I/O Profiling and the Darshan Profiling Tool

• Hands-on Session with the Profiling Tools

2

Timetable

Introduction to Performance Analysis
and the POP CoE Methodology

3/27/2018 3

• The POP Service

• Code Performance

• Profiling and Optimisation

• Real Examples of Code Improvements

• The POP Metrics

4

Contents

• Performance Optimisation and Productivity

• A Centre of Excellence
• Collaborative European project funded by Horizon 2020 programme

• Runs October 2015 –March 2018

• Providing Free Services within Europe
• Preciseunderstandingof parallelapplication and system behaviour

• Across application areas, platforms and scales

• Suggestions/support on how to rewrite code in the most productive way

• For academic and industrial codes and users

5

The POP Service

• Participating institutions:
• Barcelona Supercomputing Center, Spain (coordinator)
• HLRS, Germany
• Jülich Supercomputing Center, Germany
• NAG, UK
• RWTH Aachen, IT Center, Germany
• TERATEC, France

• A team with:
• Expertise in performance analysis and optimisation

• Expertise in parallel programming models and practices

• A research and development background and a
proven commitment to real academic and industrial use cases

6

The POP Team

? Performance Audit ĔReport
• Identify performance issues of customer code

• Small effort (< 1 month)

! Performance Plan ĔReport
• Follow-up on the audit service

• Identifies the root causes of issues and qualifies/quantifies fixes

• Longer effort (1-3 months)

V Proof-of-Concept ĔSoftware Demonstrator
• Experiments and mock-up tests for customer codes

• Kernel extraction, parallelisation, mini-apps, …

• 6 months effort

7

What does POP do?

• Code Developers
• Assessment of detailed behaviour of code

• Suggestion of most productive directions to refactor code

• Users & Infrastructure Operators
• Assessment of achieved performance in production conditions

• Possible improvements from modifying environment setup

• Evidence to interact with code provider

• Training of support staff

• Vendors
• Benchmarking, customer support and system design

8

Who are POP targeting?

• Time is money –especially on supercomputers

• To run bigger and/or more complex simulations

• To remain competitive with similar codes

9

Why improve performance?

• Scientific Codes
• Often large codes developed by many people

• Development driven by functionality rather than performance

• Difficult to get an overview of the code’s behaviour

• HPC machines
• Complex architectures

• Many nodes, each consisting of a number of multicore processors

• An interconnect and a filesystem

• Vector operations

• Deep memory hierarchies with a number of levels of cache

• Not easy to program efficiently

10

Understanding Performance is Hard

• Are there any easy wins?
• Are we using the best performing compiler for our code?
• With the best choice of compiler flags?
• And the best performing MPI library?

• We need to be very selective before spending time optimising code
• άPremature optimization is the root of all evil.έ–Donald Knuth
• Optimising code is often time-consuming
• Optimised code is often more difficult to read/understand (hence

debug/maintain)
• Optimising a routine that only takes 2% of the execution time is going to have

very little impact on the overall performance

• We therefore need a way to understand the behaviour of a code in
order to guide the optimisation process

11

Where do we start?

• Profilingrefers to the monitoring of a code’s behaviour as it executes

• There are a number of profiling tools available, which by helping to
answer a number of key questions, allow us to optimise effectively
• What are the most time-consuming routines?

• What are the most time-consuming lines in those routines?

• Is it easy to optimise or is the efficiency already high?

• What needs to be optimised, i.e. what is the bottleneck?
• Cache efficiency, vectorisation, etc

• For a parallel code, is it load-balanced?
• Essential if the code is to scale

• How many MPI messages are there and what size are they?

12

Profiling and Performance Analysis

• Gprof–GNU Profiler
• PAPI –Performance Application Programming Interface
• TAU –Tuning and Analysis Utilities
• Scalasca
• Extrae and Paraver
• Darshan
• AllineaMAP
• HPCToolkit
• OpenSpeedShop
• Vampirtraceand Vampir
•…and many others.

13

Some Profiling Tools

Instrumentation

Modification of the
executable to record

events related to
performance

Measurement

Data is collected as the
instrumented code is

executed

Analysis and
Presentation

All the data files are
loaded into memory
and presented in one

or more analysis
reports

Optimisation

Formulate an optimisation
strategy

Implement the
optimisations

14

The Profiling-Optimisation Cycle

Start

Finish

• The Input Data
• Profiling results, and therefore possible bottlenecks, are likely to change with

different input files.

• Ideally, therefore, we want to profile a typical production run rather than a
trivial test case.

• The Number of Cores
• Profiling results are likely to change when the job is run on different numbers

of cores.

• When a code does not scale well, profiling it on different numbers of cores
will help identify the cause of the poor scaling.

• Ideally, profile on the number of cores you aim to scale up to.

15

The Details of the Run

• Toolbox for time domain acoustic and ultrasound simulations
in complex and tissue-realistic media

• C++ code parallelised with Hybrid MPI and OpenMP (+ CUDA)

• Profiling showed that
• 3D domain decomposition suffered from major load imbalance:

exterior MPI processes with fewer grid cells took much longer than interior

• OpenMP-parallelised FFTs were much less efficient for grid sizes of exterior,
requiring many more small and poorly-balanced parallel loops

• Using a periodic domain with identical halo zones for each MPI rank
reduced overall runtime by a factor of 2

16

k-Wave – Brno Uni. of Technology

www.k-wave.org

• Comparison time-line before (top) and after (bottom) balancing,
showing exterior MPI ranks (0,3) and interior MPI ranks (1,2)
• MPI synchronization in red; OpenMP synchronization in cyan

17

k-Wave – Brno Uni. of Technology

• Electron-Phonon Wannier (EPW) materials science DFT code;
part of the Quantum ESPRESSO suite

• Fortran code parallelised with MPI
• Profiling showed

• Poor load balance
• Large variations in runtime, likely caused by I/O
• Final stage spends a great deal of time writing output to disk

18

EPW – University of Oxford

• Original code had all MPI processeswriting result to disk at the end
• This wasmodified this so that only one rank wrote the output
• On 480 MPI processes, time taken to write results fell from over 7

hours to just 56 seconds: a 450-fold speed-up!

19

EPW – University of Oxford

epw.org.uk

• Combined with other improvements,
this enabled simulations to scale to a
previously impractical 1920 MPI
processes

• Smoothed particle hydrodynamics code
• C++ with OpenMP

• Profiling identified several issues
• Definitions of variables in inner loops

• Unnecessary operations caused by indirection in code design

• Frequently-used non-inlinedfunctions

• High cache misses, which could be reduced by reordering the processing of
particles

• The developers decided to completely rewrite the code based on
their new knowledge, leading to an overall performance
improvement of 5x - 6x

20

sphFluids – Stuttgart Media University

• Simulation of microstructure evolution in polycrystalline materials

• After profiling, the following optimisations were implemented
• Memory allocation library optimised for multi-threading

• Reordering the work distribution to threads

• Algorithmic optimisation in the convolution calculation

• Code restructuring to enable vectorisation

• An improvement of over 10x was demonstrated for the region
concerned, with an overall application speed-up of 2.5x

21

GraGLeS2D – RWTH Aachen

Efficiency Metrics in a POP
Performance Audit

3/27/2018 22

The following metrics are used in a POP performance audit.

• Global Efficiency (GE)
• Parallel Efficiency (PE)

• Load Balance Efficiency (LB)

• Communication Efficiency (CommE)
• Serialization Efficiency (SerE)

• Transfer Efficiency (TE)

• Computation Efficiency (CompE)
• IPC Scaling

• Instruction Scaling

23

Efficiencies

• The Global Efficiency describes how well
the parallelization of your application is
working.

• The Global Efficiency can be split into
Parallel Efficiency and Computation
Efficiency.

GE = PE * CompE

24

Global Efficiency (GE)
• Global Efficiency (GE)

• Parallel Efficiency (PE)
• Load Balance Efficiency (LB)
• Communication Efficiency (CommE)

• Serialization Efficiency (SerE)
• Transfer Efficiency (TE)

• Computation Efficiency (CompE)
• IPC Scaling
• Instruction Scaling

• The Parallel Efficiency describes how well
the execution of the code in parallel is
working.

• The Parallel Efficiency can be split into
Load Balance Efficiency and
Communication Efficiency.

PE = LB * CommE

25

Parallel Efficiency (PE)

• Global Efficiency (GE)
• Parallel Efficiency (PE)

• Load Balance Efficiency (LB)
• Communication Efficiency (CommE)

• Serialization Efficiency (SerE)
• Transfer Efficiency (TE)

• Computation Efficiency (CompE)
• IPC Scaling
• Instruction Scaling

• The Load Balance Efficiencyreflects how
well the distribution of work to processes
of threads is done in the application.

• The Load Balance Efficiency is the ratio
between the average time of a process
spend in computation and the maximum
time a process spends in computation.

LB =

Load Balance Efficiency (LB)

• Global Efficiency (GE)
• Parallel Efficiency (PE)

• Load Balance Efficiency (LB)
• Communication Efficiency (CommE)

• Serialization Efficiency (SerE)
• Transfer Efficiency (TE)

• Computation Efficiency (CompE)
• IPC Scaling
• Instruction Scaling

• The Load Balance Efficiencyreflects how
well the distribution of work to processes
of threads is done in the application.

LB =

27

Load Balance Efficiency (LB)

• Global Efficiency (GE)
• Parallel Efficiency (PE)

• Load Balance Efficiency (LB)
• Communication Efficiency (CommE)

• Serialization Efficiency (SerE)
• Transfer Efficiency (TE)

• Computation Efficiency (CompE)
• IPC Scaling
• Instruction Scaling

Comp

Comp

Comm

Comm

Comp Comm

Comp

Comp

Comm

Comm

Comp Comm

P2

P1

P0

Example 1: good load balance (LB = 100%)

Comp

Comp

Comm

Comm

Comp Comm

Comp

Comp

Comm

Comm

Comp Comm

P2

P1

P0

Example 2: bad load balance (LB = 77%)

• The Communication Efficiency reflects the
loss of efficiency by communication.

• The Communication Efficiencycan be
computed as

ÍÁØ

28

Communication Efficiency (CommE)

• Global Efficiency (GE)
• Parallel Efficiency (PE)

• Load Balance Efficiency (LB)
• Communication Efficiency (CommE)

• Serialization Efficiency (SerE)
• Transfer Efficiency (TE)

• Computation Efficiency (CompE)
• IPC Scaling
• Instruction Scaling

Comp

Comp

Comm

Comm

Comp Comm

Comp

Comm Comm

Comp

Comm

P2

P1

P0

Example: Compute Communication Efficiency

1 sec. 5 sec. ρ
φ

4 sec. 2 sec. τ
φ

5 sec. 1 sec. υ
φ

CommE= ϳ= 83%

• The Communication Efficiency reflects the
loss of efficiency by communication.

• The Communication Efficiency can be split
further into Serialization Efficiency and
Transfer Efficiency.

CommE= SerE* TE

29

Communication Efficiency (CommE)

• Global Efficiency (GE)
• Parallel Efficiency (PE)

• Load Balance Efficiency (LB)
• Communication Efficiency (CommE)

• Serialization Efficiency (SerE)
• Transfer Efficiency (TE)

• Computation Efficiency (CompE)
• IPC Scaling
• Instruction Scaling

• The Serialization Efficiency describes loss
of efficiency due to dependencies between
processes.

• Dependencies can be observed as waiting
time in MPI calls where no data is
transferred, because one required process
did not arrive at the communication call
yet.

• On an ideal network with instantaneous
data transfer these inefficiencies are still
present, as no real data transfer happens.

30

Serialization Efficiency (SerE)

• Global Efficiency (GE)
• Parallel Efficiency (PE)

• Load Balance Efficiency (LB)
• Communication Efficiency (CommE)

• Serialization Efficiency (SerE)
• Transfer Efficiency (TE)

• Computation Efficiency (CompE)
• IPC Scaling
• Instruction Scaling

• On an ideal network with instantaneous data
transfer these inefficiencies are still present, as no
real data transfer happens.

• Serialization Efficiency is computed as

ÍÁØ
ὧέάὴόὸὥὸὭέὲὸὭάὩέὲὭὨὩὥὰὲὩὸύέὶὯ

ὸέὸὥὰὶόὲὸὭάὩέὲὭὨὩὥὰὲὩὸύέὶὯ

31

Serialization Efficiency (SerE)

• Global Efficiency (GE)
• Parallel Efficiency (PE)

• Load Balance Efficiency (LB)
• Communication Efficiency (CommE)

• Serialization Efficiency (SerE)
• Transfer Efficiency (TE)

• Computation Efficiency (CompE)
• IPC Scaling
• Instruction Scaling

4s

2s 4s

2s 2s 4s

4s 2s

4s

2s 2s

2s 2s

4s

Execution on a real network Simulation on an ideal network

= Communication= Computation

TE = = 75%

• The Transfer Efficiency describes loss of
efficiency due to actual data transfer.

• The Transfer Efficiency can be computed
as

TE =

32

Transfer Efficiency (TE)

• Global Efficiency (GE)
• Parallel Efficiency (PE)

• Load Balance Efficiency (LB)
• Communication Efficiency (CommE)

• Serialization Efficiency (SerE)
• Transfer Efficiency (TE)

• Computation Efficiency (CompE)
• IPC Scaling
• Instruction Scaling

4s

2s 4s

2s 2s 4s

4s 2s

4s

2s 2s

2s 2s

4s

Execution on a real network Simulation on an ideal network

= Communication= Computation

TE = = 75%

• The Computation Efficiency describes how
well the computational load of an
application scales with the number of
processes.

• The Computation Efficiency is computed
by comparing the total time spend in
computation for a different number of
threads/processes.

• For a linearly-scaling application the total
time spend in computation is constant and
thus the Computation efficiency is one.

33

Computation Efficiency (CompE)

• Global Efficiency (GE)
• Parallel Efficiency (PE)

• Load Balance Efficiency (LB)
• Communication Efficiency (CommE)

• Serialization Efficiency (SerE)
• Transfer Efficiency (TE)

• Computation Efficiency (CompE)
• IPC Scaling
• Instruction Scaling

• A low computation efficiency can have two
reasons:

1. With more processes more instructions are executed,
e.g. some extra computation for the domain
decomposition is needed.

Instruction Scaling compares the total number of
instructions executed for a different number of
threads/processes.

2. The same number of instructions is computed but the
computation takes more time, this can happen e.g.
due to shared recourses like memory channels.

IPC Scaling compares how many instructions per
cycle are executed for a different number of
threads/processes.

34

IPC Scaling / Instruction Scaling

• Global Efficiency (GE)
• Parallel Efficiency (PE)

• Load Balance Efficiency (LB)
• Communication Efficiency (CommE)

• Serialization Efficiency (SerE)
• Transfer Efficiency (TE)

• Computation Efficiency (CompE)
• IPC Scaling
• Instruction Scaling

3/27/2018 35

Contact:
https://www.pop-coe.eu
mailto:pop@bsc.es

¢Ƙƛǎ ǇǊƻƧŜŎǘ Ƙŀǎ ǊŜŎŜƛǾŜŘ ŦǳƴŘƛƴƎ ŦǊƻƳ ǘƘŜ 9ǳǊƻǇŜŀƴ ¦ƴƛƻƴΨǎ IƻǊƛȊƻƴ нлнл ǊŜǎŜŀǊŎƘ ŀƴŘ ƛƴƴƻǾŀǘƛƻƴ programmeunder grant agreement No 676553.

Performance Optimisationand Productivity
A Centre of Excellence in Computing Applications

