

Module1 / Application1
Performance Assessment Report

Document Information
Reference Number POP_AR_Sample

Author (BSC)

Contributor(s)

Date 02.09.2016

Notices:
The research leading to these results has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant agreement
No “676553”.

 2015 POP Consortium Partners. All rights reserved.

POP_AR_Sample

2

Content
 Background .. 2 1.

 Application Structure .. 3 2.

 FOA (Focus of Analysis) .. 3 3.

 Scalability ... 4 4.

 Efficiency .. 5 5.

 Load Balance ... 5 6.

 Computing Performance .. 6 7.

 Communications .. 8 8.

 Threading ... 8 9.

 Accelerators ... 9 10.

 I/O .. 9 11.

 Summary and Suggestions .. 9 12.

 Background 1.

Applicants Name: Sample Applicant
Application Name: Module1, future submodule of Application1
Programming Language: Fortran
Programming Model: MPI, OpenMP
Input data: Test case
Performance study: Initial Audit with focus on scalability

The application was monitored on Intel Sandy Bridge based system. We received
and evaluated four traces with 120 MPI processes each and one, two, four, and eight
threads per MPI process, respectively. The traces were used to study the effects of
increasing the number of threads per node, i.e. all measurements used 60 nodes
running two, four, eight and sixteen threads per node, respectively. All traces were
collected with Extrae 3.3.0 using detailed trace mode with no sampling and recording
of hardware counters in three sets changing every 0.5 seconds.

POP_AR_Sample

3

 Application Structure 2.

Figure 1 depicts the timeline of the execution using 120 MPI processes with one
thread each. The code executes three main phases Init, Calc, and Last. In the
measured standalone version, Init makes up for about 80% of the runtime. However,
this time is overrepresented in the standalone version; within a normal usage
scenario, the Calc phase is dominating and, thus, the focus of the audit. The Last
phase uses less than 0.1% of the time and can be neglected.

 Init Calc

Figure 1. Application structure in a timeline view using 120 MPI processes.

 FOA (Focus of Analysis) 3.

The Calc phase includes ten main phases of varying length. Thereby, the relative
timing is identical for each phase, i.e. all phases are virtually the same but are
differently stretched along time. We selected the fourth of these phases as focus of
analysis (FOA). Figure 2 presents the distribution of computation phases (left) and
MPI communication (right) for the selected phase. Thereby, the colour gradient from
green to blue represents the duration of the individual compute phases.

Useful duration MPI calls

Figure 2. Focus of Analysis (FOA) using 120 MPI processes with four threads each.

The FOA itself consists of three compute phases: A first phase followed by calls to
MPI_Win_create, MPI_Get, MPI_Win_fence, and MPI_Win_free. The central main
compute phase followed by a large MPI_Allreduce, which is a global synchronization
and collects the load imbalance of the previous phase. At the end, a short compute
phase followed by another MPI_Allreduce.

POP_AR_Sample

4

 Scalability 4.

Figure 3 highlights the scalability of the computation phases. It shows the execution
structure of the compute phases of the FOA on the left side; whereas the time iskept
constant for all four measurements. By the change of the gradient from green to dark
blue (marking relatively longer phases), it can be seen that specifically the second
and third long phase grow relative in time, i.e. they do not scale as well as the other
phases.

The right side depicts the speed up of the FOA in comparison to the smallest run with
one thread per process. In a perfectly linear strong scaling execution we expect that
each time the number of threads doubles, the total execution time per iteration
reduces by half (red line on the Speedup chart at the right side of Figure 3). The
overall scaling of the FOA is fair with a Speedup of 5.5 out of 8. In addition, the trend
of the curve hints to even smaller speedups for more threads per process. However,
this machine is limited to 16 concurrent threads per node anyway. In addition, it must
be noted that a decrease in scaling is expected since the number of active cores per
node are increased with more threads per process and some resources, e.g. memory
bandwidth, are shared among all cores of the node.

1
 t

h
re

a
d

2
 t

h
re

a
d

s

4
 t

h
re

a
d

s

8
 t

h
re

a
d

s

 Scalability of executions Speedup

Figure 3. Scalability of FOA. Timeline of computational regions and speedup chart.

1.00

1.93

3.46

5.52

0

2

4

6

8

0 2 4 6 8

#Threads

Speedup

Speedup Linear

POP_AR_Sample

5

 Efficiency 5.

Table 1 and Table 2 show metrics for fundamental factors and efficiencies from the
FOA of the executions using one to eight threads per MPI process. Values are in
percentages with higher values being better.

The observed global efficiency of the application decreases steadily from 91% with
one thread per process to 63% with eight threads per process. The decreasing global
efficiency is mainly caused by decreasing computation scalability, i.e. an increasing
amount of time (accumulated over all processes and threads) is spent in
computation. While there is some replication of the workload (instructions scalability),
the main reason for the decrease is the decreasing computing efficiency (IPC
scalability), i.e. the number of instructions per cycle decreases. This is discussed in
more detail in Section 7.

The second contributing factor is the decreasing communication efficiency (see
Section 8). This is mainly due to the fact that the number of MPI processes and the
volume of communication stay the same when increasing the number of threads.
However, the load balance is slightly improved with more threads per nodes and
achieves good values.

 1 thread 2 threads 4 threads 8 threads

Parallel Efficiency 90.69% 89.69% 87.41% 84.18%

  Load Balance 93.00% 93.18% 93.68% 94.65%

  Comm. Efficiency 97.52% 96.25% 93.31% 88.93%

  Serialization 99.00% 99.83% 99.80% 99.34%

  Transfer 98.50% 96.42% 93.49% 89.52%

Computation Scalability* 100.00% 97.33% 89.72% 74.37%

Global Efficiency 90.69% 87.30% 78.42% 62.61%

Table 1. Time efficiencies for the FOA.

 1 thread 2 threads 4 threads 8 threads

IPC Scalability* 100.00% 97.94% 93.42% 83.33%

Instructions Scalability* 100.00% 99.39% 98.97% 97.88%

Table 2. Other efficiencies for the FOA.

* Reference values are useful computation, IPC and total instructions based on three nodes.

 Load Balance 6.

The observed measurements show a good load balance that is slightly increasing
with the number of threads per process (93% to 94.7%). The small load imbalance is
mainly due to different amount of work (number of instructions). The nested d-shape
of the load distribution (see Figure 4) hints to a decomposition where the most load is
in the centre of the domain and the centre of each partition. The progression of the
load balance leads to the fact that at some point, the fast threads are already starting
in the next phase. We tried to highlight this with the orange lines in the centre of the
timeline. This continues until all processes and threads are synchronized with the
large MPI_Allgather (see also Figure 8).

POP_AR_Sample

6

Figure 4. Load balance of the FOA with highlighting of the structure of sub-phases.

 Computing Performance 7.

The observed computing performance of the application averages between 1.57
instructions per cycle (IPC) with one thread per process and 1.31 with eight threads
per process. In general, the application achieves an average computing performance
for this machine. However, the computing performance varies a lot between the
different compute phases. To further distinguish the individual compute phases we
applied clustering, which groups compute phases with similar performance
behaviour. Figure 5 shows the compute phases detected by clustering. It includes
five main clusters (light green, yellow, red, dark green, and violet).

Figure 5. Clustering of compute phases in the FOA.

When comparing the scaling of the individual clusters it can be seen, that Cluster 4
(dark green) scales particularly bad. Figure 7 shows a comparison of the timeline for
one and eights threads per process on the left and the total runtime increase (total
amount of time spent in the cluster accumulated over all processes and threads) on
the right. Both highlight the total runtime increase of over 350% in Cluster 4.

POP_AR_Sample

7

1
 t

h
re

a
d

8
 t

h
re

a
d

s

 Scalability of clusters Total Runtime increase

Figure 6. Scalability of FOA. Timeline of clusters and total runtime increase.

Furthermore, we used the above mentioned clustering to track the evolution of the
compute performance of the individual clusters when scaling to higher core counts,
i.e. more threads per process. Figure 7 shows this evolution for the above clusters. It
highlights that the runtime increase in Clusters 4 is mainly due to a drastic decrease
of compute performance (IPC).
Out of the various performance counters the resource stalls caused by the re-order
buffer correlate the strongest with the achieved IPC in Cluster 3 and 4. Since the
ratio of load instructions remains more or less the same when scaling, the increase in
stall cycles due to the re-order buffer is due to an increased time to load data from
memory. This is most likely caused by a saturation of the memory bandwidth or the
memory controller since with increasing the number of threads per process the
number of active cores per node is increased from two to 16.

Figure 7. Evolution of compute performance for individual clusters.

0

1

2

3

4

0 2 4 6 8

#Threads

Total Runtime Increase

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Threads/
process

1



2



4



8

POP_AR_Sample

8

 Communications 8.

There are two main MPI communication phases in each main compute phase: first, a
set of calls to MPI_Win_create, MPI_Get, MPI_Win_fence, and MPI_Win_free and a
large MPI_Allreduce; at the end, follows another, much shorter MPI_Allreduce (see
Figure 8). The MPI_Allreduce is only taking up the load imbalance of the previous
computation phase and does not introduce any significant overhead. However, the
first communication phase is not scaling at all since the total communication volume
remains basically the same and the number of MPI process, too, i.e. the
communication does not benefit from more threads. As a result the runtime share of
this communication phase increases from 0.8 to 4.8 percent.

Figure 8. MPI communication patterns in the FOA.

 Threading 9.

The OpenMP parallelization is working very efficient. As far as the traces indicate,
threads are spawned once and then run the entire time. In total, only 0.95% of the
runtime are spent in the OpenMP runtime (fork/join or scheduling). Figure 9 highlights
the main parallel regions that also coincide with the clusters above:
sparsematrix_mp_sequential_access_matrix_fast2 (cyan, Cluster 3 and Cluster 4),
sparsematrix_mp_sparsemm_new (dark blue, Cluster 1), setzer (light green, Cluster
5), and chebyshev_mp_chebyshev_clean (red, Cluster 2). Whereas the first parallel
region matches with the two clusters that do not scale very well.

Figure 9. OpenMP parallel regions in the FOA.

POP_AR_Sample

9

 Accelerators 10.

This section does not apply for this audit.

 I/O 11.

This section does not apply for this audit.

 Summary and Suggestions 12.

In this audit we analysed the performance of a submodule of Application1 with a
focus on scalability with increasing OpenMP threads. We analysed traces based on
runs using 120 processes with one to eight threads per process. Thereby, the
number of processes per node (two) remains constant. Overall, the application
achieves a good parallel efficiency, workload distribution and efficiency in the
OpenMP runtime. However, the overall scaling is only fair.

We found the main reasons for a declining overall efficiency are, first, the decreasing
computing efficiency and, second, the non-scaling communication. In addition, load
balance and computing efficiency in general might be considered for optimization.

 The primary obstacle for a better scaling is the fair computation scalability.
While the workload is partitioned well and only marginally duplicated
(instructions scalability), the computing scalability is only fair. This is most
likely due to the saturation of the memory bandwidth or the memory controller
since with increasing the number of threads per process since the resources
are shared by more active cores per node.

 The second restriction in scaling is the decreasing communication efficiency.
The efficiency decreases since the time spent in the first communication
phase with one-sided communication does not decrease at all. This
communication phase does not scale at all because communication volume
and MPI process both remain constant.

 Additionally, the load balance (while quite high) might be further invested
since it seems directly related to an increase in workload in the centre of the
domain as well as the centre of each partition (double d-shape).

 Furthermore, the general computing efficiency (exempt scaling) is quite low
and might be considered for improvement. The average IPC of 1.57 to 1.31 is
only fair. This is mainly due to a high number of load/store instructions (about
25% - 40%).

 Finally, we highly recommend a further study that compares the results of this
report (based on an increase of threads) with measurements that increase the
number of MPI processes in total and per node to achieve comparable
results. This way, we can evaluate which ratio of MPI processes to OpenMP
threads delivers best results. A further study can be done either as a second
POP Audit or a POP Performance Plan that includes a more detailed analysis
and optimization guidance. In discussion with the user we decided to conduct
this further study.

