
Profiling Input/Output of HPC Applications

HPC applications spend time in three phases: computation, communication (between processes) and
input/output (I/O) that read/write data to persistent storage. Tools and techniques for profiling
computation and communication are widely available as most codes spend time in these phases, but
I/O is often neglected. However, with the advent of large HPC systems, I/O is now becoming a
bottleneck, hence the need for optimising I/O which can only be done once the I/O characteristics
have been profiled.

The I/O profiling tool that will be covered here is Darshan1 which is an open-source lightweight tool
for profiling I/O of MPI applications. Darshan is able to profile the following methods: a) POSIX I/O b)
MPI-IO c) parallel NetCDF and d) parallel HDF5, and it is only able to profile codes written in C, C++
and Fortran. Darshan is invoked using the LD_PRELOAD Linux environment variable just prior to the
code execution. For static executables, the application code must statically link the Darshan library.
After the code completes Darshan creates a file in the form:

<USERNAME>_<BINARY_NAME>_<JOB_ID>_<DATE>_<UNIQUE_ID>_<TIMING>.darshan.gz

which will be referred to as <darshan file>.darshan.gz which is a zipped trace file. Once the
above output file is created, use the Darshan Perl script to create a summary report:

darshan-job-summary.pl <darshan file>.darshan.gz

Below is an example summary report created by Darshan for a 48 process MPI run:

1 http://www.mcs.anl.gov/research/projects/darshan/

Note that the Darshan report provides a summary report and not a time line report.

The “Average I/O cost per process” bar chart (top left) is showing POSIX I/O and MPI-IO statistics
relative to the application run time and in which modes, namely read, write and meta-data. Note
that meta-data operations can be costly and should be avoided where possible. Depending on the
number of meta-data servers in the parallel file systems, meta-data operations can be serialised
resulting in degraded performance.

The “I/O operation counts” bar chart (top right) shows how many I/O operations occurred either by
individual MPI processes or collective I/O calls. This example is showing a large number of operations
which can be costly. Ideally, an application should read/write a large amount of data with fewer I/O
calls, thereby avoiding I/O overheads.

The “I/O Sizes” graph (bottom left) is showing the data sizes in I/O operations which shows that data
sizes are within the range of 1 MB to 4 MB which is good as applications should avoid writing small
amounts of data where I/O overheads will start to dominate.

The “I/O Pattern” bar chart (bottom right) shows the number of sequential and consecutive I/O
operations. Consecutive I/O access means that data blocks are read with no gaps in between and
sequential access means I/O access with irregular gaps in between which are costlier.

Darshan has other utilities which provide summary information. The following command gives
statistics on every file accessed by the HPC application:

darshan-summary-per-file.sh <darshan file>.darshan.gz output-dir/

The following command produces a list of the files opened by an application and the amount of time
spent performing I/O to each of them:

darshan-parser --file-list <darshan file>.darshan.gz

The above command prints a unique signature of each file called a hash. For statistics on a specific
file of interest, use the following commands:

darshan-convert --file hash <darshan file>.darshan.gz \

interesting_file.darshan.gz

darshan-job-summary.pl interesting_file.darshan.gz

where hash is the hash from the previous command. For a complete listing of all data contained
within a Darshan trace file in human readable form, use the command:

darshan-parser <darshan file>.darshan.gz

Darshan is an extremely lightweight and powerful tool for profiling I/O characteristics and stores all
profiling data in buffers so it does not skew the profile. The profiling data is flushed to a trace file
after MPI_Finalize() is called so it will not interfere with your application’s performance.

