
Simulation Techniques &
Scientific Computing

Results of Ateles and Musubi
Code Analyses

Harald Klimach
harald.klimach@uni-siegen.de

University of Siegen

Simulation Techniques &
Scientific Computing

19.05.17 APES Code Analyses 2

•  Simulation Techniques and Scientific Computing
at University of Siegen

•  Head: Sabine Roller
•  Part of the engineering department
•  Looking into large scale simulations, mainly in

the field of computational fluid dynamics

Our Group

Simulation Techniques &
Scientific Computing

19.05.17 APES Code Analyses 3

About our Software (APES)

Simulation Techniques &
Scientific Computing

19.05.17 APES Code Analyses 4

•  Started development in 2011 at the German
Research School for Simulation Sciences in
Aachen

•  Set out to overcome scalability limitations we
encountered with previous tools

•  Development in modern Fortran (mainly F95,
but some F2003 features required)

•  All in all somewhat more than 100,000 lines of
code. Definitely smaller than 200k.

About our Software

Simulation Techniques &
Scientific Computing

19.05.17 APES Code Analyses 5

•  Basis: octree mesh representation
•  Partitioning by space-filling curve
–  Simplistic mesh representation on disk, easy to read

on a distributed parallel system
–  Little amount of meta data (number of elements,

definition of root node) can be read in by single
process and broadcasted

–  All other data can be read independently

•  Distributed parallel neighbor identification in
locally refined meshes

About TreElM
APES-

mate
Coupling of

Apes solvers

Library access

File access

APES
Adaptable Poly-Engineering Simulator Ateles

Discontinuous

Galerkin (DG)

Musubi
Lattice Boltzmann

Muriqui
Space-Time DG

Seeder
Mesh generation

Harvesting
Post-Processing

Analysis

Aotus
Configuration

with Lua

Shepherd
Deployment Scripts

TreElM
Octree mesh

infrastructure

Simulation Techniques &
Scientific Computing

19.05.17 APES Code Analyses 6

•  Creating Octree Meshes
–  With specific data format
–  Allow for special boundary treatment in

•  Lattice-Boltzmann (q-values)
•  Discontinuous Galerkin (penalty terms)

•  Serial for up to 2 billion elements
•  Parallel version for larger meshes

•  Solver internal generation of simple meshes

Mesh Generation (Seeder)

Simulation Techniques &
Scientific Computing

19.05.17 APES Code Analyses 7

•  Generating visualization files
–  (VTK)

•  Out of binary dumps by the solver
•  Solver writes binary data via MPI-IO to single

file in solver-specific format
•  Postprocessing separated to allow processing on

different machines
•  Allows extraction of parts and computation of

derived quantities

Post-Processing (Harvester)

Simulation Techniques &
Scientific Computing

19.05.17 APES Code Analyses 8

•  Quite generic Lua binding
•  Utilizes ISO-C interface
•  Some abstractions to ease use as configuration

for Fortran
•  Allows for user-defined functions
•  Parameter relations can be explicitly expressed

in the configuration
•  Read by single process and broadcasted

Configuration (Aotus)

Simulation Techniques &
Scientific Computing

19.05.17 APES Code Analyses 9

•  Lattice-Boltzmann Solver
–  Simple loop operation
–  Explicit scheme for incompressible flows

•  Implements various Kernels
•  Unstructured neighbor handling (from treelm),

sparse matrix approach
•  Allows for multi-species simulations
•  Allows for locally refined simulations

Musubi

Simulation Techniques &
Scientific Computing

19.05.17 APES Code Analyses 10

•  Discontinuous Galerkin
–  High order (8 and higher)
–  Modal/nodal representations

•  For compressible flows
•  Also implements other hyperbolic systems, like

Maxwell equations
•  Cubical elements
•  Geometry by penalization

Ateles

Simulation Techniques &
Scientific Computing

APES Code Analyses 11

•  Code analyzed and improved by:
–  José Gracia
–  Christoph Niethammer
–  Stephan Walter
–  Anastasia Shamakina

•  Many thanks to those kind colleagues at HLRS

On the Work by POP

19.05.17

Simulation Techniques &
Scientific Computing

APES Code Analyses 12

•  Ateles was analyzed on the Stuttgart system
Hazel Hen

•  Musubi was investigated on our local university
cluster Horus
–  Tools were installed in cooperation between

university computing center and POP staff
–  Was not involved in that as a user

Systems used?

19.05.17

Simulation Techniques &
Scientific Computing

APES Code Analyses 13

•  There have been three reports on Ateles
–  The initial performance audit
–  A more detailed performance plan
–  A proof of concept implementing some suggestions

Ateles Reports

19.05.17

Simulation Techniques &
Scientific Computing

APES Code Analyses 14

•  POP asked for a realistic testcase
•  The setup I provided them was the 3D Jet with

local refinement, sponge and covolume
•  This includes basically all relevant features

•  Never looked into the performance of this
ourselves before

Ateles Setup

19.05.17

Simulation Techniques &
Scientific Computing

APES Code Analyses 15

Setup Illustration

19.05.17

Simulation Techniques &
Scientific Computing

APES Code Analyses 16

Bad Strong Scaling ...

19.05.17

Simulation Techniques &
Scientific Computing

APES Code Analyses 17

Bad Weak Scaling

19.05.17

Simulation Techniques &
Scientific Computing

APES Code Analyses 18

Reason: Large Load Imbalances

19.05.17

Simulation Techniques &
Scientific Computing

APES Code Analyses 19

•  Load imbalances due to non-optimized code in
covolume:

•  Posofmodgcoeffqtens: Index lookup in the
polynomials
–  Had been replaced in other parts of the code but not

in covolume -> gone now completely

•  Facevalleftbndans and facevalrightbndans:
functions just returning 1 or -1, easily inlined

•  Tem_isnan: check interval

Code Analysis

19.05.17

Simulation Techniques &
Scientific Computing

APES Code Analyses 20

•  Flu_* and aot_* functions showed up as
contributing factors to the load imbalance
–  Can be overcome by implementing the respective

functions as predefined functions in Fortran itself.

Lua Functions...

19.05.17

Simulation Techniques &
Scientific Computing

APES Code Analyses 21

•  Avoid many small function calls.
–  Kind of done already by Peter

•  Reduce the amount of duplicate computation,
or specialise code a compiletime.
–  Harder to achieve, but probably due to no one

looking into the covolume stuff for optimization so
far

•  Reduce load imbalance by improving static
domain decomposition.

Recommendations

19.05.17

Simulation Techniques &
Scientific Computing

APES Code Analyses 22

•  More detailed look into load imbalances
•  Vampir traces
•  And Scalasca analysis

Performance Plan

19.05.17

Simulation Techniques &
Scientific Computing

APES Code Analyses 23

•  Imbalances manifest at two points:
–  Allreduce after each timestep (actually controllable

with check interval)
–  Waitall after each substep (neighbor exchange)

•  Further investigation of the imbalances at the
waitall as more severe.

Intermediate result

19.05.17

Simulation Techniques &
Scientific Computing

APES Code Analyses 24

•  Load imbalances mainly due to covolume
interpolation at refinement boundaries
–  Note: These especially made use of many small

function calls (low efficiency)

•  The computational load imbalance clearly is of
main interest.

•  Nevertheless, also the communication has been
investigated.

Observation

19.05.17

Simulation Techniques &
Scientific Computing

APES Code Analyses 25

Communication Matrix
Number	 of	 messages	

19.05.17

Simulation Techniques &
Scientific Computing

APES Code Analyses 26

Surprise: 0-sized messages

19.05.17

Simulation Techniques &
Scientific Computing

APES Code Analyses 27

•  Look into serial performance and
implementation of some of the suggestions
from the Audit

•  Improving code vectorization

•  Brief evaluation on SX-ACE

Proof of Concept

19.05.17

Simulation Techniques &
Scientific Computing

APES Code Analyses 28

•  Inlining posofmodgqtens reduced the number of
function calls by nearly 97 %

•  Reduces the execution time on Hazel Hen to 94
% of the original, not inlined, code version

•  Replace divisions by multiplications, further
reduction to 72 % of the inlined version.

Main Factors

19.05.17

Simulation Techniques &
Scientific Computing

APES Code Analyses 29

•  Bad vectorization because sxmpif03 often
vectorizes over nScalars

•  In the meantime improved for various code
paths

•  Strong memory-conflicts for orders of powers of
two (should be avoided, padding may need to
be introduced)!

SX-ACE

19.05.17

Simulation Techniques &
Scientific Computing

APES Code Analyses 30

•  Testcase was flow around a sphere
–  With involved boundaries (q-values, inflow and

outflow)
–  No local refinements
–  Excluded I/O (only reading of mesh in the

initialization)

•  Run on Horus
–  Intel Xeon X5600 6-core CPU, 2 sockets per node
–  Infiniband Interconnect

Musubi

19.05.17

Simulation Techniques &
Scientific Computing

19.05.17 APES Code Analyses 31

POP Ref.No. POP AR 5

Figure 1: Execution timeline of an 8-iteration block within the main computational phase for
a run with 12 MPI ranks. The timelines of the 12 MPI ranks/cores are stacked vertically;
time runs from left to right. The cores are either executing user code (green color) which is
considered useful, or code in the MPI runtime system (red color), which is considered non-useful
parallelisation overhead. At the end of each iteration, we observe a phase of non-blocking MPI
communication. Iterations are grouped in blocks of 8 iterations. These blocks are separated
by a blocking MPI collective (vertical black lines) which leads to a synchronisation across all
processes.

●

●

●

●

●

50 100 150

0
5

10
15

ranks

sp
ee

du
p

[1
]

50 100 150

0
5

10
15

50 100 150

0
5

10
15

●

●

●

●
●

50 100 150

0
20

40
60

80
10

0

ranks

sc
al

in
g

ef
fic

ie
nc

y[
%

]

50 100 150

0
20

40
60

80
10

0

ranks

sc
al

in
g

ef
fic

ie
nc

y[
%

]

50 100 150

0
20

40
60

80
10

0

ranks

sc
al

in
g

ef
fic

ie
nc

y[
%

]

Figure 2: Strong scaling for 12 to 192 MPI ranks. The green line marks ideal scaling, i.e.
scaling e�ciency 100%, while the black line corresponds to a scaling e�ciency of 80%, which is
considered the lowest acceptable value.

focus of analysis. Fig. 2 shows results for core count, n, ranging from 12 to 192 in terms of the
speedup, S(n), and the scaling e�ciency, ÷(n), which are defined respectively as

S(n) = MLUPsn

MLUPs0
and ÷(n) = S(n)

n/n0
,

where indices n refer to values for n cores, and the index 0 refers to the values of the reference,
which we have taken to be the run which showed the highest performance at 12 MPI ranks.
Ideally, the speedup would increase proportionally with the number of cores and the e�ciency
remain constant at 100%. Our measurements show that the e�ciency levels o� at around 85%,

4

Main Focus: Scalability (Strong Scaling)

Simulation Techniques &
Scientific Computing

19.05.17 APES Code Analyses 32

•  Still acceptable, but...
•  Expected to see a better scaling, as we usually

observe nearly perfect scalability with these
kind of testcases

•  Turns out, the boundary conditions cause a
larger load-imbalance than expected

Surprisingly Bad Scaling

Simulation Techniques &
Scientific Computing

19.05.17 APES Code Analyses 33

POP Ref.No. POP AR 5

ondemand Linux performance governor instead of the performance governor.
Since the low IPS behaviour occurs rarely, we were unable to determine the source of it.

●

●

●
●

●

50 100 150

0
5

10
15

ranks

sp
ee

du
p

[1
]

●

●

Execution date
23.05.2016
24.05.2016

●

●

●

●

●

50 100 150

0
5

10
15

ranks

sp
ee

du
p

[1
]

50 100 150

0
5

10
15

50 100 150

0
5

10
15

●

●

●

●
●

50 100 150

0
20

40
60

80
10

0

ranks

sc
al

in
g

ef
fic

ie
nc

y[
%

]

●

●

Execution date
23.05.2016
24.05.2016

●

●

●

●
●

50 100 150

0
20

40
60

80
10

0

ranks

sc
al

in
g

ef
fic

ie
nc

y[
%

]

50 100 150

0
20

40
60

80
10

0

ranks

sc
al

in
g

ef
fic

ie
nc

y[
%

]

50 100 150

0
20

40
60

80
10

0

ranks

sc
al

in
g

ef
fic

ie
nc

y[
%

]

Figure 3: MLUPs strong scaling for 12 to 192 ranks and always 12 ranks per node. For more
than eight nodes a significant performance degeneration can occur. The green line marks linear
scaling between the execution time and the used ranks/nodes. The black line mark the 80%
scaling boundary that defines as the lower limit to define that an application is scaling.

Figure 4: Constant very low Instructions Per Second count on three out of 16 CPU’s in four
nodes. The IPS is shown in a colour scale, with blue=0.75 Giga-IPS and red=1.45 Giga-IPS.
The grey parts are related to a higher or lower IPS, that is mainly related to MPI functions.
The IPS can degenerate by up to a factor of two what corresponds to the degenerated MLUPs
for this run compared to the expected performance from other runs.

7 Communications
This section presents analysis related to the communication inside the FoA. As stated in section
4 is the Communication Efficiency with at least 96% very good. Nevertheless, we want to
highlight some points. The communication scheme inside the FoA is:

9

Machine Seems to Have Bad Days...

Simulation Techniques &
Scientific Computing

19.05.17 APES Code Analyses 34

•  Significant performance variability
–  Clock speed degeneration, probably due to
ondemand performance governor, mainly in MPI IO
and MPI_Ssend

–  Day to day variation of overall instructions per
second

–  Noise on the interconnect

Observations from the Machine (Horus)

Simulation Techniques &
Scientific Computing

19.05.17 APES Code Analyses 35

•  Imbalances by bondaries should be taken care
–  We have dynamic load-balancing now

•  Using non-temporal stores
–  Implemented now, improved performance by around

50%

•  Avoid indirection
–  Can't do that

•  Overlap communication and computation
–  Requires major effort

Recommendations for Musubi

Simulation Techniques &
Scientific Computing

19.05.17 APES Code Analyses 36

•  The audits by POP were very helpfull to us and
revealed various issues, we weren't even aware
of before

•  Initial communication could have been a little
more active (things like the inlining of small
functions could have been easily resolved early
on)

•  Would be happy to have code modifications on
a branch or somewhere

Feedback

Simulation Techniques &
Scientific Computing

19.05.17 APES Code Analyses 37

•  I love the neat and well explained reports
•  I can give them to the developers along with

lessons learned
•  Direct recommendations on Do's and Don'ts for

everbody

•  Again some earlier communication with
preliminary results is even more productive.

The Reports are Great

Simulation Techniques &
Scientific Computing

Thank you!

APES Code Analyses 38 19.05.17

