

DFTB Performance Assessment Summary

Client	Dr. Stan van Gisbergen, Software for Chemistry and Materials
Lead Analyst	Nick Dingle, Numerical Algorithms Group
Co-Analyst	Jonathan Boyle, Numerical Algorithms Group
	Sally Bridgwater, Numerical Algorithms Group

The POP Audit of DFTB identified an opportunity for improvement of its matrix multiplication kernel and this is being further investigated in a proof-of-concept study. It is hoped that this will lead to an increase in DFTB's scalability on distributed-memory HPC machines.

DFTB has very good computational load balance but relies on blocking MPI collective calls to communicate data between processes. A further study was recommended to investigate whether it might be possible to improve performance by using non-blocking collective operations to enable the overlap of communication and computation.

DFTB is an electronic structure code developed by the Amsterdam-based computational chemistry software company Software for Chemistry and Materials (SCM).

A full technical report can be found at https://pop-coe.eu/sites/default/files/pop-files/pop-ar-dftb.pdf
For more information contact: POP team

Email: pop@bsc.es Web: https://pop-coe.eu

Notices:

The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No "676553".

© 2015 POP Consortium Partners. All rights reserved.