
Additive performance metrics for MPI + OpenMP parallel code

The idea

1. Ideal runtime

Firstly, for each class of performance bottleneck we define an ‘ideal’ runtime.

This ideal runtime is the runtime which would be achieved if the bottleneck(s) were
removed.

For example, consider all parallel bottlenecks. Assuming 1 thread per CPU core, if
we define comp as time in useful computation on each core, then for perfect
parallelisation on n cores, i.e. zero load imbalance and with zero overheads from
the parallelism:

ideal_runtime = sum(comp)/n = average(comp)

2. Efficiency and inefficiency metrics

Secondly, after calculating an ideal runtime (e.g. from trace data) and measuring
the actual runtime, for each performance bottleneck define the following metrics:

efficiency = ideal_runtime / runtime

inefficiency = 1 - efficiency

These metrics measure how far we are from the ideal performance.

For optimal performance, efficiency = 1 and inefficiency = 0.

For example, the efficiency which measures all parallel bottlenecks is defined by:

Parallel Efficiency = [sum(comp)/n] / runtime = average(comp)/runtime

3. A metrics hierarchy

Thirdly, note we can split a class of bottlenecks into individual contributions, and
define efficiency and inefficiency metrics for each of these contributions.

The sum of the ‘child’ inefficiencies from each contribution equals the ‘parent’
inefficiency, which is why we call these ‘additive’ metrics.

For example, we can split Parallel Efficiency into:

1. Process Efficiency, which measures efficiency of the processes, i.e. ignores
threading bottlenecks.

2. Thread Efficiency, which measures efficiency of the threading, i.e. ignores
process bottlenecks.

Top level efficiency metrics

Parallel Efficiency measures cost of all bottlenecks arising from the parallelism.

Parallel Efficiency = average(comp) / runtime

Global Efficiency combines Parallel Efficiency and Computation Scaling. It uses an ideal
runtime of sum(comp_ref)/n, i.e. ideal parallelisation of the reference computation on n
cores.

Global Efficiency = Parallel Efficiency x Comp. Scaling = [sum(comp_ref)/n] / runtime

Process Efficiency measures inefficiency from inter-process imbalance, and from time
outside OpenMP and within MPI (inefficiency from time inside OpenMP and within MPI
contributes to Thread Efficiency).

Therefore, Process Efficiency considers only time outside OpenMP and within MPI as non-
useful. If serial_comp is time each process is doing useful computation outside OpenMP,
and omp is time each process is inside OpenMP, then:

useful = serial_comp + omp

Process Efficiency = average(useful) / runtime

Thread Efficiency measures average cost of serial computation outside OpenMP plus
average cost of time inside OpenMP when threads are not doing useful computation.

Thread Efficiency = [runtime - average(useful) + average(comp)] / runtime

Scaling metrics

Scaling metrics are a different type of metric. They measure a quantity relative to a
reference case.

The reference case is usually the smallest unit of computational hardware used, e.g. a
single compute node.

If we define comp_ref as useful computation per core for the reference case, for strong
scaling we can define the following top-level scaling metric:

Computation Scaling = sum(comp_ref) / sum(comp)

A value < 1.0 tells us how much performance is degrading because total useful
computation is increasing. We can define similar scaling metrics for IPC (instructions per
cycle), sum(instructions) and frequency during useful computation, where:

Computation Scaling = IPC Scaling x Instruction Scaling x Frequency Scaling

Parallel
Efficiency

Process
Efficiency

Process
Communication

Efficiency

Process
Transfer
Efficiency

Process
Serialisation

Efficiency

Process Load
Balance

Efficiency

Thread
Efficiency

Serial Region
Efficiency

OpenMP
Parallel

Efficiency

OpenMP Load
Balance

Efficiency

Other OpenMP
efficiency
metrics

This project has received funding from the European Union‘s Horizon 2020 research and innovation programme under grant agreement No 676553 and 824080.

Calculating the metrics

Most of the metrics can be calculated using values easily extracted
from trace data, i.e.

• Time in useful computation (comp)

• Time in useful computation within OpenMP (omp_comp)

• Time in useful computation outside OpenMP on the master
thread (serial_comp)

• Time in OpenMP (omp)

PyPOP automates metrics calculation from Extrae traces (Transfer
and Serialisation Eff currently not supported for MPI inside OpenMP).

Process Communication Efficiency child metrics

These metrics require being able to measure the time cost of MPI data transfer for MPI outside
OpenMP on the process with max(useful), i.e. on the process with minimum time in MPI outside
OpenMP, since this is the process which defines the Process Communication Efficiency.

So, if mpip is the time each process spends in MPI and outside OpenMP, and mpi_idealp is this time on
an ideal network with zero latency and infinite bandwidth, then we need to find min(mpip) and
min(mpi_idealp). Dimemas can be used to find mpi_idealp from Extrae traces. Then:

Process Transfer Efficiency measures cost of MPI (outside OpenMP) due to network data transfer.

Efficiency = [runtime - min(mpip) + min(mpi_idealp)] / runtime

Process Serialisation Efficiency measures time cost of MPI dependencies (for MPI outside OpenMP).

Efficiency = [runtime - min(mpi_idealp)] / runtime

The time cost of MPI inside OpenMP is treated as a bottleneck by OpenMP Parallel Efficiency, this is
because of the difficulty of defining an ideal runtime for MPI inside OpenMP.

OpenMP Parallel Efficiency child metrics

OpenMP Parallel Efficiency can be split into a contribution per
parallel region, if suitable trace data exists for analysis.

Alternatively OpenMP Parallel Efficiency can be split into a
contribution per source of inefficiency, e.g. computational imbalance
between the threads within OpenMP, or time spent in MPI,
scheduling, synchronisation, etc.

PyPOP can be used to measure efficiency contributions per region,
and contributions from OpenMP imbalance, using Extrae data.

Process Efficiency child metrics

Process Load Balance Efficiency measures cost of process imbalance.

 Efficiency = [runtime - max(useful) + avg(useful)] / runtime

Process Communication Efficiency measures the cost of adding MPI
(outside OpenMP) from data transfer and waits due to dependencies.

Efficiency = max(useful) / runtime

Thread Efficiency child metrics

OpenMP Parallel Efficiency measures the cost of bottlenecks within
OpenMP. If omp_comp is useful computation within OpenMP, then:

Efficiency = [runtime - avg(omp) + avg(omp_comp)] / runtime

Serial Region Efficiency measures average cost of serial computation
outside OpenMP. If nt is number of threads per process then:

Efficiency = [runtime – avg(serial_comp) x (nt-1) / nt] / runtime

www.pop-coe.eu

* pop@bsc.es

 @POP_HPC

https://pypi.org/project/NAG-PyPOP/
https://pypi.org/project/NAG-PyPOP/
http://www.pop-coe.eu/
mailto:pop@bsc.es
https://twitter.com/pop_hpc

