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Introduction 
 
The classic POP MPI metrics have been around for several years 
now and are a powerful and innovative tool for identifying MPI 
performance bottlenecks. With the advent of the additive metrics 
for MPI + OpenMP, this guide has been written as a reference to 
explain what each of the additive hybrid metrics tell us. The 
additive hybrid metrics hierarchy is shown in Figures 1-3.  
 
Additive Efficiency and Inefficiency metrics 
 
Efficiency tells us what fraction of our actual execution time would 
remain after removing a specific bottleneck or set of bottlenecks.  
 
Inefficiency tells us what fraction of our actual execution time 
would be removed by eliminating a specific bottleneck or set of 
bottlenecks. 
 
Top Level Metrics 
 
Parallel Efficiency tells us what fraction of our measured execution 
time would remain after removing all bottlenecks caused by the 
parallelisation of the code. 
If Parallel Efficiency is low, look at the sub-metrics to identify if the 
problem lies within the process parallelism, the thread parallelism, 
or both. 
Child metrics: Process Efficiency and Thread Efficiency.  
 
Computation Scaling tells us if time in useful computation is 
increasing or decreasing. It measures ratio of total useful 

computation in a reference case relative to the actual total useful 
computation. 
Useful computation is the time executing useful user code, i.e. 
excluding time when threads or processes are idle, and excluding 
time in the overheads of parallelisation, e.g. MPI calls, OpenMP 
thread synchronisation, etc.  
Values less than one indicate total useful computation is increasing, 
i.e. performance is reducing. If Computation Scaling is low, look at 
the sub-metrics to identify the relative contributions from 
increasing instruction count, reducing IPC (instructions per cycle) or 
reducing frequency (cycles per time). 
Child metrics: Instruction Scaling, IPC Scaling, Frequency Scaling.  
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Global Efficiency tells us what fraction of actual execution time 
would remain if all parallel bottlenecks were removed and 
assuming the total time in useful computation to be the same as in 
the Computational Scaling reference case. 
Global Efficiency is the product of Parallel Efficiency and 
Computation Scaling. It is therefore the only efficiency metric in 
this scheme which can be larger than one, since Computation 
Scaling can be greater than one. This can be avoided by choosing 
the Computation Scaling reference case to be that with the smallest 
amount of useful computation. 
If the value of Global Efficiency is low, look at the sub-metrics to 
identify if the cause is within the parallelisation, or due to an  
increase in useful computation, or both.  
Child metrics: Parallel Efficiency and Computation Scaling.  
 
Computation Scaling sub-metrics 
 
IPC, Frequency and Instruction Scaling measure the ratios of useful 
instructions per cycle, useful cycles per time and sum of useful 
instructions, relative to the Computational Scaling reference case. 
Values less than one indicate reducing performance, i.e. reducing 
IPC, reducing frequency, or increasing instructions. 
 
If Instruction Scaling is low, try to identify where in the execution 
this occurs. Possible causes are increasing iteration counts, e.g. in 
an iterative solver with degrading convergence; computation which 
is replicated over each process or thread; or reducing vectorisation.  
 
Low IPC Scaling (and low IPC in general) is typically caused by 
memory bottlenecks, i.e. cycles are wasted waiting for data to 

arrive from main memory or lower-level caches. This should be 
investigated using suitable tools, e.g. Intel’s VTune, or using PAPI to 
access hardware counters. 
 
Low Frequency Scaling may be hard to fix, as it is related to 
processor power usage. However, it is useful to identify this 
contribution to Computation Scaling, in order to understand the 
impact. 
 
Mid-Level Efficiency Metrics  
 
Process Efficiency ignores threading by treating the following as 
useful: 

• Time in OpenMP parallel regions 

• Time in useful computation outside OpenMP 
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Figure 3: Parallel Efficiency sub-metrics 
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Hence it measures inefficiency arising from the time processes 
spend within MPI and outside OpenMP due to: 

• Process imbalance of total useful work 

• Process MPI data transfer 

• Process serialisation due to dependencies. 
Inefficiency due to MPI inside OpenMP is ignored, as it is treated as 
a thread inefficiency. 
If Process Efficiency is low, look at the sub-metrics to identify 
whether to investigate process imbalance, or to investigate where 
processes spend time in MPI due to data transfer or dependencies. 
Child metrics: Process Load Balance & Process Communication 
Efficiency. 
 
Thread Efficiency measures inefficiency arising from idle CPU cores 
during serial computation outside OpenMP, and from any time 
outside useful computation within OpenMP parallel regions. 
If this metric is low, use the sub-metrics to identify if the cause is 
due to serial computation outside OpenMP (i.e. Amdahl’s Law) or 
due to inefficiencies within the OpenMP parallel regions.  
Child metrics: Serial Region Efficiency & OpenMP Parallel Efficiency 
 
Process low-level metrics 
 
These metrics consider inefficiency arising from process imbalance 
and by MPI outside OpenMP. Inefficiency due to MPI inside 
OpenMP is ignored and treated as a thread inefficiency. 
 
Process Load Balance Efficiency measures the inefficiency arising 
from imbalance in the distribution of total useful work over the 
processes, where useful work is defined as the following two states: 

• Time in OpenMP 

• Time in useful computation outside OpenMP. 
It is possible, but unlikely, that the sum of the time in these two 
states is balanced with imbalance in each individual state. 
This metric measures an average imbalance cost, i.e. it ignores the 
cost of any imbalances / serialisations which average out over the 
full execution time. Essentially, this metric measures the cost from 
the process imbalance that would occur if all MPI dependencies 
between processes were removed. See the section on serialisation 
and load balance efficiency for details. 
If Process Load Balance Efficiency is low, first identify if the 
imbalance lies within OpenMP, or in computation outside OpenMP, 
or both. Then try to identify where within the execution this occurs, 
e.g. in which OpenMP regions. It may be useful to also measure the 
imbalance of useful computation over the processes.  
 
Process Communication Efficiency measures the time cost 
introduced by MPI communications, i.e. the time processes spend 
in MPI due to data transfer over the network and due to MPI 
dependencies. It will exclude the inefficiency arising from time in 
MPI measured by Process Load Balance Efficiency (see the section 
on serialisation and load balance efficiency for details).  
If this value is low, look at the sub-metrics to identify if the 
inefficiency results from data transfer over the network or is due to 
dependencies.  
Child metrics: Process Transfer Efficiency and Process Serialisation 
Efficiency.  
 
Process Transfer Efficiency measures process inefficiency arising 
from data transfer over the network, i.e. inefficiencies that would 
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be removed if data transfer on the network was instantaneous. It 
includes time in MPI where data transfer is occurring, and time 
waiting in MPI calls where the wait states are a result of data 
transfer on other processes.  
If this metric is low, explore the MPI communication patterns and 
try to identify if the issue is due to latency or bandwidth. A 
comparison of simulated ideal network trace data with actual trace 
data can help identify regions of execution with large amounts of 
time in data transfer. Ideal network traces can be generated from 
Extrae traces using Dimemas. 
 
Process Serialisation Efficiency measures the process inefficiency 
arising from time in MPI caused by dependencies, i.e. time in MPI 
after excluding inefficiency due to data transfer and average 
imbalance of useful work. See the section on serialisation and load 
balance efficiency for more details. 
If this value is low, try to identify where time is spent in MPI which 
isn’t caused by data transfer or average imbalance, e.g. identify 
where time in MPI occurs in an Extrae ideal timeline generated by 
Dimemas. 
 
Thread low-level metrics 
 
Serial region efficiency measures the cost of useful computation 
outside OpenMP where cores associated with slave threads are 
idle. The value is the inefficiency averaged over the processes.  
If this value is low, try to identify regions of serial execution where 
OpenMP can be added. VTune is a useful tool for identifying these 
regions. 
 

OpenMP Parallel Efficiency measures the cost of inefficiencies 
within OpenMP parallel regions, averaged over the processes.  
Inefficiency is any time spent outside useful computation within an 
OpenMP parallel region and can include time in MPI. 
If this value is low, look at the OpenMP Parallel Efficiency values for 
each region to identify which regions contribute most to the 
inefficiency. 
Also, look at the OpenMP Load Balance Efficiency and other 
OpenMP Parallel Efficiency sub-metrics to identify if the problem is 
load imbalance within OpenMP, or something else.  
 
OpenMP Parallel Efficiency per region measures the individual 
contributions to OpenMP Parallel Efficiency from each OpenMP 
region. If a value is low, examine the source code and trace data for 
the region to identify the cause.  
 
OpenMP Load Balance Efficiency measures the time cost of 
computational imbalance within OpenMP, averaged over the 
processes.  
If this value is low, look at the OpenMP Load Balance Efficiency 
value for each OpenMP region to identify where in the execution 
the imbalance occurs. Try alternative load balancing strategies for 
this region, e.g. dynamic scheduling, loop collapsing.  
 
Other OpenMP Parallel Efficiency sub-metrics can be calculated 
based on average values (over all threads) of non-useful time 
within OpenMP per source of inefficiency, e.g.  

• OpenMP MPI Efficiency  

• OpenMP Synchronisation Efficiency 

• OpenMP Scheduling and Fork/Join Efficiency 

https://tools.bsc.es/extrae
https://tools.bsc.es/dimemas


 6 

If these values are low for a specific OpenMP region, examine the 
source code and trace data to understand why.  
 
Serialisation and load balance metrics 
 
There are subtleties which are important to understand when it 
comes to using the load balance and serialisation efficiency metrics 
described here. As an illustration, consider the artificial case in 
Figure 4, which shows execution on two CPU cores. The first core 
spends 10s in useful computation, then 10s waiting to synchronise 
with the execution on the second core, followed by 20s in useful 
computation and negligible time waiting at a second 
synchronisation point. The second core spends 20s in useful 
computation, then negligible time at the first synchronisation point, 
followed by 10s in useful computation and 10s waiting for the 
second synchronisation. 
Is this load imbalance, or is this serialisation? 
There is no clear answer to this question, as it depends on personal 
preference and on context. In this example, the total time in useful 

computation is balanced, as each core spends 30s in computation, 
so we might say this case has perfect load balance. However, it is 
also valid to say that in each 20s segment there is imbalance, or 
perhaps serialisation. Do we want to measure imbalance between 
the start and the end of the execution, or over sub-regions of 
execution defined by specific synchronisation points? And how do 
we differentiate between imbalance and serialisation? 
First of all, let’s consider OpenMP. If the pattern represents two 20s 
OpenMP parallel regions, as in figure 5, it is natural to describe the 
inefficiency as imbalance within OpenMP. Now consider the 
OpenMP case in figure 6, with the same pattern of computation 
and waiting states, but with the last 20s of execution now 
consisting of a 10s OpenMP region and 10s of serial computation 
outside OpenMP. It is natural now to describe the inefficiency as a 
combination of OpenMP imbalance from the first OpenMP region, 
and serialisation outside OpenMP in the last 10s of execution, and 
to think of the second OpenMP region as balanced. 
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This is the convention chosen for OpenMP parallelisation in these 
additive metrics, i.e. to describe serialisation and imbalance in 
terms of load balance within OpenMP regions and serialisation 
outside OpenMP. This approach is possible because OpenMP 
provides identifiable and convenient synchronisation points 
between which to measure serialisation and imbalance. 
For MPI the situation is quite different, as it is possible to write MPI 
code with no global synchronisation other than the start and end of 
the execution, and even if global synchronisation points do exist, 
they may not be at convenient locations between which to 

measure imbalance. Hence with MPI, it is much more natural to 
think of load balance in terms of distribution of total useful work 
between the start and end of the region of interest, and to think of 
serialisation as the additional inefficiency from time waiting in MPI 
due to MPI dependencies combined with the local imbalances 
which average out over the full region of interest. This is the 
approach adopted here, as well as that used in the original POP MPI 
metrics. In this approach the pattern in Figure 4 is considered as 
perfectly load balanced, with inefficiency arising from serialisation 
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due to the dependencies which arise because of the 
synchronisation points.  
 
Hence, the Thread Efficiency sub-metrics include an OpenMP Load 
Balance Efficiency to measure the absolute cost of imbalance 
within the OpenMP regions, based on the imbalance for each 
execution of each OpenMP region, and a Serial Region Efficiency to 
measure the cost of serial computation outside OpenMP regions. 
The table below illustrates the value of these efficiency metrics for 
Figures 5 & 6. 

 Parallel 
Efficiency 

Serial Region 
Efficiency 

Open MP Load 
Balance Eff. 

Figure 5 0.75 1.0 0.75 

Figure 6 0.75 0.875 0.875 

 
Calculating Serial Region Efficiency is relatively straightforward, 
assuming trace tools can measure the time in useful computation 
outside OpenMP. Calculating the cost of the imbalance within 
OpenMP is trickier, as it requires measuring the difference between 
maximum useful computation and average useful computation for 
every execution of every OpenMP parallel region. NAG-PyPOP 
provides a tool with this functionality, which can calculate OpenMP 
Load Balance Efficiency from Extrae trace data. VTune also can be 
used to calculate the cost of the imbalance within OpenMP. 
 
The Process Efficiency sub-metrics follow the philosophy used in 
the classic POP MPI metrics, other than redefining Process Load 
Balance Efficiency and Process Serialisation Efficiency as additive 
metrics. With this approach, Process Load Balance Efficiency 
measures the cost of imbalance in the distribution of total useful 

work, i.e. the imbalance cost which would be measured if MPI 
dependencies between processes were removed. Serialisation 
Efficiency measures inefficiency from process serialisation which 
arises because of MPI dependencies, i.e. imbalances which average 
out over the region of interest. 
To illustrate this, if Figure 4 represented two processes, the Process 
Load Balance Efficiency would be 1.0, i.e. perfect load balance, and 
Serialisation Efficiency would be 0.75. 
Both Process Load Balance and Serialisation Efficiency measure 
inefficiency arising from time within MPI which is unrelated to data 
transfer, i.e. the MPI time that would remain if data transfer were 
instantaneous. 
 
Process Load Balance Efficiency is relatively easy to calculate, 
assuming trace data can be used to measure time per process in 
OpenMP and in serial computation outside OpenMP. 
Process Serialisation Efficiency can be trickier to obtain, as it 
requires first calculating the proportion of execution time resulting 
from process MPI data transfer over the network. This is usually 
possible for Extrae traces using the Dimemas simulation tool, which 
can calculate the runtime that would be achieved on a theoretical 
ideal network, i.e. with simultaneous data transfer. 

https://pypi.org/project/NAG-PyPOP/

