
 1

Introduction

The classic POP MPI metrics have been around for several years
now and are a powerful and innovative tool for identifying MPI
performance bottlenecks. With the advent of the additive metrics
for MPI + OpenMP, this guide has been written as a reference to
explain what each of the additive hybrid metrics tell us. The
additive hybrid metrics hierarchy is shown in Figures 1-3.

Additive Efficiency and Inefficiency metrics

Efficiency tells us what fraction of our actual execution time would
remain after removing a specific bottleneck or set of bottlenecks.

Inefficiency tells us what fraction of our actual execution time
would be removed by eliminating a specific bottleneck or set of
bottlenecks.

Top Level Metrics

Parallel Efficiency tells us what fraction of our measured execution
time would remain after removing all bottlenecks caused by the
parallelisation of the code.
If Parallel Efficiency is low, look at the sub-metrics to identify if the
problem lies within the process parallelism, the thread parallelism,
or both.
Child metrics: Process Efficiency and Thread Efficiency.

Computation Scaling tells us if time in useful computation is
increasing or decreasing. It measures ratio of total useful

computation in a reference case relative to the actual total useful
computation.
Useful computation is the time executing useful user code, i.e.
excluding time when threads or processes are idle, and excluding
time in the overheads of parallelisation, e.g. MPI calls, OpenMP
thread synchronisation, etc.
Values less than one indicate total useful computation is increasing,
i.e. performance is reducing. If Computation Scaling is low, look at
the sub-metrics to identify the relative contributions from
increasing instruction count, reducing IPC (instructions per cycle) or
reducing frequency (cycles per time).
Child metrics: Instruction Scaling, IPC Scaling, Frequency Scaling.

Global
Efficiency

Parallel
Efficiency

Computation
Scaling

Figure 1: Top level metrics

 2

Global Efficiency tells us what fraction of actual execution time
would remain if all parallel bottlenecks were removed and
assuming the total time in useful computation to be the same as in
the Computational Scaling reference case.
Global Efficiency is the product of Parallel Efficiency and
Computation Scaling. It is therefore the only efficiency metric in
this scheme which can be larger than one, since Computation
Scaling can be greater than one. This can be avoided by choosing
the Computation Scaling reference case to be that with the smallest
amount of useful computation.
If the value of Global Efficiency is low, look at the sub-metrics to
identify if the cause is within the parallelisation, or due to an
increase in useful computation, or both.
Child metrics: Parallel Efficiency and Computation Scaling.

Computation Scaling sub-metrics

IPC, Frequency and Instruction Scaling measure the ratios of useful
instructions per cycle, useful cycles per time and sum of useful
instructions, relative to the Computational Scaling reference case.
Values less than one indicate reducing performance, i.e. reducing
IPC, reducing frequency, or increasing instructions.

If Instruction Scaling is low, try to identify where in the execution
this occurs. Possible causes are increasing iteration counts, e.g. in
an iterative solver with degrading convergence; computation which
is replicated over each process or thread; or reducing vectorisation.

Low IPC Scaling (and low IPC in general) is typically caused by
memory bottlenecks, i.e. cycles are wasted waiting for data to

arrive from main memory or lower-level caches. This should be
investigated using suitable tools, e.g. Intel’s VTune, or using PAPI to
access hardware counters.

Low Frequency Scaling may be hard to fix, as it is related to
processor power usage. However, it is useful to identify this
contribution to Computation Scaling, in order to understand the
impact.

Mid-Level Efficiency Metrics

Process Efficiency ignores threading by treating the following as
useful:

• Time in OpenMP parallel regions

• Time in useful computation outside OpenMP

Computation
Scaling

Instruction
Scaling

IPC
Scaling

Frequency
Scaling

Figure 2: Computation Scaling sub-metrics

 3

Figure 3: Parallel Efficiency sub-metrics

Parallel
Efficiency

Process
Efficiency

Process
Communication

Efficiency

Process
Transfer

Efficiency

Process
Serialisation

Efficiency

Process Load
Balance

Efficiency

Thread
Efficiency

Serial Region
Efficiency

OpenMP
Parallel

Efficiency

OpenMP Load
Balance

Efficiency

Other OpenMP
efficiency
metrics

 4

Hence it measures inefficiency arising from the time processes
spend within MPI and outside OpenMP due to:

• Process imbalance of total useful work

• Process MPI data transfer

• Process serialisation due to dependencies.
Inefficiency due to MPI inside OpenMP is ignored, as it is treated as
a thread inefficiency.
If Process Efficiency is low, look at the sub-metrics to identify
whether to investigate process imbalance, or to investigate where
processes spend time in MPI due to data transfer or dependencies.
Child metrics: Process Load Balance & Process Communication
Efficiency.

Thread Efficiency measures inefficiency arising from idle CPU cores
during serial computation outside OpenMP, and from any time
outside useful computation within OpenMP parallel regions.
If this metric is low, use the sub-metrics to identify if the cause is
due to serial computation outside OpenMP (i.e. Amdahl’s Law) or
due to inefficiencies within the OpenMP parallel regions.
Child metrics: Serial Region Efficiency & OpenMP Parallel Efficiency

Process low-level metrics

These metrics consider inefficiency arising from process imbalance
and by MPI outside OpenMP. Inefficiency due to MPI inside
OpenMP is ignored and treated as a thread inefficiency.

Process Load Balance Efficiency measures the inefficiency arising
from imbalance in the distribution of total useful work over the
processes, where useful work is defined as the following two states:

• Time in OpenMP

• Time in useful computation outside OpenMP.
It is possible, but unlikely, that the sum of the time in these two
states is balanced with imbalance in each individual state.
This metric measures an average imbalance cost, i.e. it ignores the
cost of any imbalances / serialisations which average out over the
full execution time. Essentially, this metric measures the cost from
the process imbalance that would occur if all MPI dependencies
between processes were removed. See the section on serialisation
and load balance efficiency for details.
If Process Load Balance Efficiency is low, first identify if the
imbalance lies within OpenMP, or in computation outside OpenMP,
or both. Then try to identify where within the execution this occurs,
e.g. in which OpenMP regions. It may be useful to also measure the
imbalance of useful computation over the processes.

Process Communication Efficiency measures the time cost
introduced by MPI communications, i.e. the time processes spend
in MPI due to data transfer over the network and due to MPI
dependencies. It will exclude the inefficiency arising from time in
MPI measured by Process Load Balance Efficiency (see the section
on serialisation and load balance efficiency for details).
If this value is low, look at the sub-metrics to identify if the
inefficiency results from data transfer over the network or is due to
dependencies.
Child metrics: Process Transfer Efficiency and Process Serialisation
Efficiency.

Process Transfer Efficiency measures process inefficiency arising
from data transfer over the network, i.e. inefficiencies that would

 5

be removed if data transfer on the network was instantaneous. It
includes time in MPI where data transfer is occurring, and time
waiting in MPI calls where the wait states are a result of data
transfer on other processes.
If this metric is low, explore the MPI communication patterns and
try to identify if the issue is due to latency or bandwidth. A
comparison of simulated ideal network trace data with actual trace
data can help identify regions of execution with large amounts of
time in data transfer. Ideal network traces can be generated from
Extrae traces using Dimemas.

Process Serialisation Efficiency measures the process inefficiency
arising from time in MPI caused by dependencies, i.e. time in MPI
after excluding inefficiency due to data transfer and average
imbalance of useful work. See the section on serialisation and load
balance efficiency for more details.
If this value is low, try to identify where time is spent in MPI which
isn’t caused by data transfer or average imbalance, e.g. identify
where time in MPI occurs in an Extrae ideal timeline generated by
Dimemas.

Thread low-level metrics

Serial region efficiency measures the cost of useful computation
outside OpenMP where cores associated with slave threads are
idle. The value is the inefficiency averaged over the processes.
If this value is low, try to identify regions of serial execution where
OpenMP can be added. VTune is a useful tool for identifying these
regions.

OpenMP Parallel Efficiency measures the cost of inefficiencies
within OpenMP parallel regions, averaged over the processes.
Inefficiency is any time spent outside useful computation within an
OpenMP parallel region and can include time in MPI.
If this value is low, look at the OpenMP Parallel Efficiency values for
each region to identify which regions contribute most to the
inefficiency.
Also, look at the OpenMP Load Balance Efficiency and other
OpenMP Parallel Efficiency sub-metrics to identify if the problem is
load imbalance within OpenMP, or something else.

OpenMP Parallel Efficiency per region measures the individual
contributions to OpenMP Parallel Efficiency from each OpenMP
region. If a value is low, examine the source code and trace data for
the region to identify the cause.

OpenMP Load Balance Efficiency measures the time cost of
computational imbalance within OpenMP, averaged over the
processes.
If this value is low, look at the OpenMP Load Balance Efficiency
value for each OpenMP region to identify where in the execution
the imbalance occurs. Try alternative load balancing strategies for
this region, e.g. dynamic scheduling, loop collapsing.

Other OpenMP Parallel Efficiency sub-metrics can be calculated
based on average values (over all threads) of non-useful time
within OpenMP per source of inefficiency, e.g.

• OpenMP MPI Efficiency

• OpenMP Synchronisation Efficiency

• OpenMP Scheduling and Fork/Join Efficiency

https://tools.bsc.es/extrae
https://tools.bsc.es/dimemas

 6

If these values are low for a specific OpenMP region, examine the
source code and trace data to understand why.

Serialisation and load balance metrics

There are subtleties which are important to understand when it
comes to using the load balance and serialisation efficiency metrics
described here. As an illustration, consider the artificial case in
Figure 4, which shows execution on two CPU cores. The first core
spends 10s in useful computation, then 10s waiting to synchronise
with the execution on the second core, followed by 20s in useful
computation and negligible time waiting at a second
synchronisation point. The second core spends 20s in useful
computation, then negligible time at the first synchronisation point,
followed by 10s in useful computation and 10s waiting for the
second synchronisation.
Is this load imbalance, or is this serialisation?
There is no clear answer to this question, as it depends on personal
preference and on context. In this example, the total time in useful

computation is balanced, as each core spends 30s in computation,
so we might say this case has perfect load balance. However, it is
also valid to say that in each 20s segment there is imbalance, or
perhaps serialisation. Do we want to measure imbalance between
the start and the end of the execution, or over sub-regions of
execution defined by specific synchronisation points? And how do
we differentiate between imbalance and serialisation?
First of all, let’s consider OpenMP. If the pattern represents two 20s
OpenMP parallel regions, as in figure 5, it is natural to describe the
inefficiency as imbalance within OpenMP. Now consider the
OpenMP case in figure 6, with the same pattern of computation
and waiting states, but with the last 20s of execution now
consisting of a 10s OpenMP region and 10s of serial computation
outside OpenMP. It is natural now to describe the inefficiency as a
combination of OpenMP imbalance from the first OpenMP region,
and serialisation outside OpenMP in the last 10s of execution, and
to think of the second OpenMP region as balanced.

Core 1

Core 2

0 s 10 s 20 s 30 s 40 s

Useful

Useful computation Useful

Useful computation Waiting

Waiting

Synchronisation Synchronisation

Figure 4

 7

This is the convention chosen for OpenMP parallelisation in these
additive metrics, i.e. to describe serialisation and imbalance in
terms of load balance within OpenMP regions and serialisation
outside OpenMP. This approach is possible because OpenMP
provides identifiable and convenient synchronisation points
between which to measure serialisation and imbalance.
For MPI the situation is quite different, as it is possible to write MPI
code with no global synchronisation other than the start and end of
the execution, and even if global synchronisation points do exist,
they may not be at convenient locations between which to

measure imbalance. Hence with MPI, it is much more natural to
think of load balance in terms of distribution of total useful work
between the start and end of the region of interest, and to think of
serialisation as the additional inefficiency from time waiting in MPI
due to MPI dependencies combined with the local imbalances
which average out over the full region of interest. This is the
approach adopted here, as well as that used in the original POP MPI
metrics. In this approach the pattern in Figure 4 is considered as
perfectly load balanced, with inefficiency arising from serialisation

Core 1

Core 2

Useful

Useful computation Useful

Useful computation Waiting

Waiting

Synchronisation Synchronisation

Figure 5

OpenMP region 1 OpenMP region 2

Core 1

Core 2

Useful

Useful computation Useful

Waiting

Idle

Figure 6

OpenMP
region 1

Useful Useful

OpenMP
region 2

 8

due to the dependencies which arise because of the
synchronisation points.

Hence, the Thread Efficiency sub-metrics include an OpenMP Load
Balance Efficiency to measure the absolute cost of imbalance
within the OpenMP regions, based on the imbalance for each
execution of each OpenMP region, and a Serial Region Efficiency to
measure the cost of serial computation outside OpenMP regions.
The table below illustrates the value of these efficiency metrics for
Figures 5 & 6.

 Parallel
Efficiency

Serial Region
Efficiency

Open MP Load
Balance Eff.

Figure 5 0.75 1.0 0.75

Figure 6 0.75 0.875 0.875

Calculating Serial Region Efficiency is relatively straightforward,
assuming trace tools can measure the time in useful computation
outside OpenMP. Calculating the cost of the imbalance within
OpenMP is trickier, as it requires measuring the difference between
maximum useful computation and average useful computation for
every execution of every OpenMP parallel region. NAG-PyPOP
provides a tool with this functionality, which can calculate OpenMP
Load Balance Efficiency from Extrae trace data. VTune also can be
used to calculate the cost of the imbalance within OpenMP.

The Process Efficiency sub-metrics follow the philosophy used in
the classic POP MPI metrics, other than redefining Process Load
Balance Efficiency and Process Serialisation Efficiency as additive
metrics. With this approach, Process Load Balance Efficiency
measures the cost of imbalance in the distribution of total useful

work, i.e. the imbalance cost which would be measured if MPI
dependencies between processes were removed. Serialisation
Efficiency measures inefficiency from process serialisation which
arises because of MPI dependencies, i.e. imbalances which average
out over the region of interest.
To illustrate this, if Figure 4 represented two processes, the Process
Load Balance Efficiency would be 1.0, i.e. perfect load balance, and
Serialisation Efficiency would be 0.75.
Both Process Load Balance and Serialisation Efficiency measure
inefficiency arising from time within MPI which is unrelated to data
transfer, i.e. the MPI time that would remain if data transfer were
instantaneous.

Process Load Balance Efficiency is relatively easy to calculate,
assuming trace data can be used to measure time per process in
OpenMP and in serial computation outside OpenMP.
Process Serialisation Efficiency can be trickier to obtain, as it
requires first calculating the proportion of execution time resulting
from process MPI data transfer over the network. This is usually
possible for Extrae traces using the Dimemas simulation tool, which
can calculate the runtime that would be achieved on a theoretical
ideal network, i.e. with simultaneous data transfer.

https://pypi.org/project/NAG-PyPOP/

