

D7.3 Intermediate POP Use Cases Report Version 1.0

Document Information

Contract Number	676553
Project Website	www.pop-coe.eu
Contractual Deadline	M24
Dissemination Level	PU
Nature	R
Author	Bernd Mohr (JUELICH)
Contributor(s)	WP2, WP4, WP5
Reviewer	Renata Gimenez (BSC), Sally Bridgwater (NAG)
Keywords	Customer Statistics, Services Statistics, Success Stories

Notices:

The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No "676553".

© 2015 POP Consortium Partners. All rights reserved.

Change Log

Version	Author	Description of Change
V0.1	Bernd Mohr	Initial Draft
V0.2	Renata Gimenz, Sally Bridgwater	Project internal review and feedback
V1.0	Bernd Mohr	Final version taking reviewer feedback into account
		(Final Change Log entries reserved for releases to the EC)

Table of Contents

Exe	cutive Summary	4
1.	Introduction	4
2.	Target audiance	5
3.	Dissemination channels	5
Acro	onyms and Abbreviations	6
	NEX: Brochure	7

Executive Summary

This deliverable is a report targeting potential future POP customers and the interested HPC community in general providing overall statistics about Use Cases and associated KPIs of the POP project work in the first two years of the project as well as a selection of successful and especially motivating use cases (success stories). It provides a high-level, selective summary of the very detailed and much more complete information in the public POP reports of work package 2 (Customer Advocacy), 4 (Analysis) and 5 (Proof-of-Concept).

1. Introduction

This deliverable is a report targeting potential future POP customers and the interested HPC community in general providing overall statistics about Use Cases and associated KPIs of the POP project work in the first two years of the project as well as a selection of successful and especially motivating use cases (success stories). It provides a high-level, selective summary of the very detailed and much more complete information in the public POP reports of work package 2 (Customer Advocacy), 4 (Analysis) and 5 (Proof-of-Concept). For this document, this includes the following deliverables:

• D2.3 Customer Feedback Measurement II (M24)

This deliverable summarizes the findings of the customer advocate during the second year of the project. It includes a section reporting on the second and third User Forum meetings. It also explicitly states the actual suggestions made to the Customer Advocate to the internal Operational Management meetings of the projects and the Customer Advocate vision of how whether and how such suggestions did influence the actual operation of the POP CoE.

- D4.2 First-year Report on Analysis (M12)
- D4.3 Second-year Report on Analysis (M24)

These deliverable contain a description of the cases analysed during the first and second year of the project, including a public version of the reports and a summary the findings and recommendations to the customers. It also includes recommendations for tool developers and programming model standardization bodies that may arise from the studies.

- D5.2 First-year Report on Proof-of-Concept (M12)
- D5.3 Second-year Report on Proof-of-Concept (M24)

These deliverable contains a description of the proof-of-concept work during the first and second year of the project, including a public version of the reports and a summary of the findings and recommendations to the customers. It also includes recommendations for tool developers and programming model standardization bodies that may arise from the studies as well as recommendations from mock-up tests which should be used within the training activities.

Instead of just repeating, by combining and summarizing the content from the deliverables of the POP work packages WP2, WP4 and WP5, which are all available as public reports, it was decided to publish the actual content of this deliverable in the form of a brochure which can be found in the annex. This way it allows to targets to a much greater extend more non-technical persons, for example, managers in companies or laboratories who would approve or order a POP service for a HPC code in their organisation. This persons are very unlikely to read lengthy technical white papers or reports.

By this, we also try to follow the recommendations of the reviewers in the first year review of the project to more actively target non-technical persons with our dissemination strategy.

2. Target audience

As already explained, the content of the brochure targets more non-technical persons, including

- Managers in SMEs, large companies or research laboratories who would approve or order a POP service for a HPC code in their organisation
- Team leaders of HPC code development teams
- HPC computing centre managers responsible for the effective use of their computer systems
- Managers in SMEs, large companies and research laboratories responsible for benchmarking and code quality insurance
- People working at funding bodies funding HPC code development work
- The greater public interested in high-performance computing

3. Dissemination channels

The brochure will be available for download at our main POP website (<u>https://pop-coe.eu</u>). We will use an blog article, as well as our social media channels at Twitter and LinkedIn to publicise the availability of the brochure.

The brochure will be also available in printed form for public distribution at our numerous visits to dissemination events like HPC application conferences and workshops or training events.

Acronyms and Abbreviations

- BSC Barcelona Supercomputing Center
- CA Consortium Agreement
- CAdv Customer Advocate
- D deliverable
- DoA Description of Action (Annex 1 of the Grant Agreement)
- EC European Commission
- GA General Assembly / Grant Agreement
- HLRS High Performance Computing Centre (University of Stuttgart)
- HPC High Performance Computing
- IPR Intellectual Property Right
- Juelich Forschungszentrum Juelich GmbH
- KPI Key Performance Indicator
- M Month
- MS Milestones
- PEB Project Executive Board
- PM Person month / Project manager
- POP Performance Optimization and Productivity
- R Risk
- RV Review
- RWTH Aachen Rheinisch-Westfaelische Technische Hochschule Aachen
- USTUTT (HLRS) University of Stuttgart
- WP Work Package
- WPL Work Package Leader

ANNEX: Brochure

Performance Analysis and Optimization Services at your Fingertips!

or

Why you should use our Services for your HPC code!

The POP Team

- Excellence in performance tools and tuning
- Excellence in programming models and practices
- Research and development background
- Proven commitment to real academic and industrial use cases

Services Provided

The Performance Optimisation and Productivity Centre of Excellence in Computing Applications provides performance optimisation and productivity services for academic AND industrial code in all domains!

The services are **free of charge** to research organisations, SMEs, ISVs and companies in the EU!

What are the main performance issues of your code ? ⇒ Performance Audit Service

- Primary service
- Small effort (typically 1 month)
- Customer receives report

Determine root causes of issues found and quantify approaches to address them !

Parallel Application Performance Plan

- Follow-up on the audit service
- Longer effort (typically 1-3 months)
- Customer receives report

Perform experiments and code changes to show effect of proposed optimizations ✓

- ⇒ Proof-of-Concept
 - Follow-up on the performance plan service
 - 6 months effort
 - Customer receives software demonstrator

Customer Quotes

"The audit of the VAMPIRE code has been extremely helpful in identifying the hot spots and specific areas to focus on performance improvements. Preliminary results suggest this may give a factor of 2 performance improvement on modern CPUs. I would highly recommend the service for the speed and usefulness of the audit."

-- Richard Evans, VAMPIRE developer

"High performance computing is an extremely interesting topic to our application. The POP project has helped Artelnics to speed-up Neural Designer up to 5 times, when compared to the serial version. And we can still improve a lot more by implementing MPI processing in computer clusters."

artelnics

-- Dr Roberto Lopez, CEO Artelnics

"POP analysis elegantly reveals in detail how our application's algorithm is running on HPC architectures. It is an extremely useful optimisation tool! Our POP contact was very knowledgeable and enthusiastic. An excellent service!" -- Joseph Parker, GS2 Developer

Science & Technology Facilities Council

Success Story: POP Proof-of-Concept study leads to 10X performance improvement for customer

The Institute of Physical Metallurgy and Metal Physics of RWTH Aachen University (IMM) develops a code for the simulation of microstructure evolution in polycrystalline materials, called GraGLeS2D. The OpenMP parallel code is designed to run on large SMP machines in the RWTH compute cluster with 16-sockets and up to 2 TB of memory. After a POP performance audit of the code, several performance issues were detected and a performance plan on how these issues could be resolved was set up.

To verify the proposed optimization steps, POP experts and the code developer at IMM implemented these steps in close collaboration as the first proof-ofconcept study done in POP. The optimizations include:

- The use of a memory allocation library optimized for multi-threading.
- Reordering the work distribution to threads to optimize for data locality between neighboring cells. (see Figure below)
- Algorithmic optimizations in the *convolution* algorithm.
- Code restructuring to enable vectorization in parts of the computation.

Initial work/data distribution over sockets (left) compared to the optimized distribution (right).

After these optimization steps were implemented, a significant performance improvement was achieved. For the hotspot of the application, the *convolution* region, the **speedup going from 1 to 16 sockets is about 15 instead of 6** as it was before the optimization. Overall, the runtime of this region was **improved by a factor of more than 10X**. The proof-of-concept verified that the planned optimizations indeed resulted in significantly better code performance.

Success Story: Runtime for fluid dynamics code reduced by nearly 50%

The Institute for Simulation Techniques and Scientific Computing of the University of Siegen develops a fluid dynamic code called Ateles. The code is written in Fortran and had already shown good performance on HPC systems in the past. The code was now extended by new features which were analysed within a POP performance audit. Several issues related to the serial code performance were identified and a performance plan on how these issues could be resolved was set up.

In a proof-of-concept study the POP experts verified, that the proposed code optimizations lead to a significant performance improvement.

The optimizations included:

- Inlining of very short functions with high call rates
- Parameter and variable redefinitions that allow the reduction of expensive CPU operations like divisions

With these optimizations applied to the real code, we measured for the provided test case a **performance increase of nearly 50%** and the customer was able to confirm a substantial performance improvement for his production runs.

Success Story: Insights into computer graphics code for fluids led to a factor of 6 improvement

The computer animation department of the Stuttgart Media University, in cooperation with the Visualisation Research Centre of the University of Stuttgart, develops a Smoothed Particle Hydrodynamics solver to simulate fluids for computer graphics applications called sphFluids. The Code is written in C++ and was mainly developed as a cross-platform desktop application, which is parallelized with OpenMP.

The sphFluids code supports the most common pressure as well as viscosity models. Additionally, various approaches to model surface tension are integrated. More details can be found in the paper "Evaluation of Surface Tension Models for SPH-Based Fluid Animations Using a Benchmark Test".

The sphFluids code underwent a POP performance audit, which identified several issues related to the sequential computational performance. The good information exchange with the POP experts during the study helped the code developers to identify critical parts in their application.

One of the issues found was code regions with low instruction per cycle (IPC) values. Several causes for this were pointed out including:

- Definitions of variables in inner loops
- Unnecessary operations caused by indirections in the code design
- Non-inlined functions
- Cache misses, due to memory calls

Based on the audit, the code developers could optimize the identified parts in the code by, e.g., inlining very short functions that were used frequently or, regarding the cache misses, reorder the particle processing order. These modifications improved the performance of the code by about 100%. Furthermore, they identified similar issues in other parts of the code and reviewed the overall code design. The developers came to the decision to completely rewrite the simulation code. Using the insights gained from the POP-Experts, they could optimize the simulation performance further, which led to an **overall performance improvement up to 500%** - **600%**, depending on the scenario and pressure model used.

Success Story: University of Oxford code scalability improved 10-fold

EPW (Electron-Phonon using Wannier interpolation) is a materials science DFT code distributed in the Quantum ESPRESSO suite. It is Fortran code parallelised with MPI. Developers from the University of Oxford requested a POP performance audit of an unreleased version of the code that was still in development, to be tested with a GaN polar wurtzite crystal dataset on the ARCHER Cray XC30 computer at EPCC.

The initial audit of 48 processes identified a variety of load imbalance issues, and excessive time in the ephwann simulation phase. This became the focus of a subsequent POP performance plan, where the developers specialized routines to avoid unnecessary calculation and optimize vector summations.

Using a finer uniform grid reduced load imbalance and this revised version was 60% faster and could be used for larger execution configurations with 240 MPI processes.

Using a finer uniform grid reduced load imbalance and this revised version was 60% faster and could be used for larger execution configurations with 240 MPI processes.

Unfortunately, overall performance was disappointing, with writing the final simulation results having grown to dominate execution time. The figure shows a histogram of the writing time varying by MPI process on nine compute nodes. Although the amount of data is not large (around 50MB of formatted text), it was a bottleneck inhibiting scaling and larger simulations. A POP proof-of-concept investigation was pursued which replaced file writing concurrently by all processes with serial writing only by rank zero. This reduced writing time from over seven hours to under one minute, and now a negligible component of EPW execution.

The final code scales well with 85% parallel efficiency for 960 MPI processes, supporting larger simulations. These POP reports helped support EPW readiness to productively utilize additional larger allocations of computational resources.

Success Story: Open-source acoustic simulation code runtime halved

k-Wave is an open-source toolbox for time domain acoustic and ultrasound simulations in complex and tissue-realistic media. Simulation functions are based on the k-space pseudospectral method.

POP was requested by developers from Brno University of Technology to audit the C++ version parallelised with MPI+OpenMP executing on the Salomon supercomputer hosted by IT4Innovations in the Czech Republic. A configuration of 32 dual-processor Intel Xeon compute nodes was used running 64 MPI processes each with 12 OpenMP threads. The 3D domain decomposition employed (4x4x4 process arrangement) was discovered to suffer from poor performance with large amounts of both MPI and OpenMP synchronization time arising from major load imbalance.

The figure shows an extract of the time-line visualization, showing the three FFTW phases for one timestep of the first four MPI processes. Originally (top with white background), the interior processes (ranks 1&2) wait in MPI communication (red) for the much slower exterior processes (ranks 0&3) where many more small and poorly-balanced parallel loops have lots of OpenMP synchronization time (cyan). Although the exterior MPI processes have fewer grid cells, the OpenMP-parallelized FFTs from the FFTW library are much less efficient as they have a larger FFT base.

With this insight, the developers were quickly able to apply a periodic domain with identical halo zones for each MPI rank (lower time-line with lilac background), with the result that the **execution is now more than twice as fast**. Both versions of the code are compared in the POP performance audit.

Success Story: Data analysis code used to predict movie ratings improved by around 40%

Modelling complex data sets is a major problem today. An example here is prediction of compound-on-target-activity in chemogenomics from the ChEMBL data set with more than 2 Million compound records. The compound-on-target-activity study at large scale is an extremely important question in the process of discovering new drugs, which is currently addressed in the ExCAPE project. The Bayesian Probabilisitc Matrix Factorization (BPMF) is an efficient method to solve these kind of problems. The BPMF code was analysed in a POP Audit and Performance Plan service activity. While the BPMF code had already shown scalability over several 100 nodes and also good efficiency on the node level, POP experts could still identify points for improvement.

So a follow-up Proof of Concept study was performed together with the customer. During the study several points were addressed:

- The linear algebra operations inside BPMF make use of the very efficient and highly vectorizing Eigen Library but the POP experts were able to identify some improvements due to mathematical properties of the matrices saving a good margin of CPU operations in some parts of the code.
- BPMF comes with different flavours of algorithms optimized for various data element sizes. A crucial point is the selection of which algorithm to use. A closer look at the switching points leads to another improvement.
- The last and most challenging issue was load balance. Due to the nature of the problems solved with BPMF, the datasets include very inhomogeneous data, which result in load balance problems in the parallelization. BPMF therefore comes with a hybrid MPI+OpenMP parallelization. The still existing load balance problem found was at the lower OpenMP level. Here a single level OpenMP parallelization was used on the node level.

The POP experts now implemented a second nesting level and also made use of OpenMP tasks, which solved the load balance problem. Originally the load balance of the problematic code part was 42.5% – after the modifications 98.9%. Finally, the improvements made in this POP Proof of Concept were evaluated with three different datasets achieving speedups between 1.6 and 1.8 that correspond to runtime reductions between 38 and 44%.

Success Story: Load balance of flagship computational chemistry application improved leading to factor of two runtime reduction

ADF is the flagship code from Software for Chemistry and Materials (SCM) company based in The Netherlands. It is a computational chemistry application which uses density functional theory calculations to predict the structure and reactivity of molecules.

A POP Audit and Performance Plan were carried out on their new Hartree-Fock exchange implementation which is an important new feature of the application. The application uses MPI and shared memory within a node to parallelise the problem.

The main issue located was the load imbalance due to unequal distribution of work, there was also low computational scalability but that was found to be an artefact of the time cores spent idle waiting to be distributed work. The communication efficiency was found to be good and did not need further investigation.

A recommendation was made to improve the load balancing algorithm with an expected performance improvement of a factor of two for good balance.

Original timeline of load balance for Hartree-Fock exchange, communication lines in black

On 128 cores the section of imbalanced work took 4.24s for 45 atoms. Dynamic load balancing was implemented by the SCM developers with a dedicated dispatcher process to farm out the work to all other cores. This reduced the runtime to 1.992s which is a **performance improvement of over 2 times**, as was estimated in the POP Performance Plan.

Performance Audit and Plan Statistics

* Based on 118 performance audits and 21 performance plans performed by POP

Performance Audit and Plan Statistics

* Based on 118 performance audits and 21 performance plans performed by POP

Customer Satisfaction

Performance Audits (51 customers)	 Over 90% very satisfied or satisfied with service About half of the customers signed-up for a follow-up service
Performance Plans (10 customers)	 About 90% very satisfied or satisfied with service All customers thought suggestions were precise and clear and 70% plan to implement the suggested code modifications About 2/3 plan to do use the POP services again
Proof-of- Concepts (5 customers)	 All customers very satisfied or satisfied with this service Over 80% plan to implement further code modifications or complete the work of the POP experts

Performance Optimisation and Productivity

A Centre of Excellence in Computing Applications

The POP Centre of Excellence is funded from October 2015 to March 2018. The content of this report is based on the work in the first two years of the project.

IMPRINT

Editor and Graphic Design Bernd Mohr

Jülich Supercomputing Centre

Photos

POP project (page 2) Graphics provided by customers, used with permission

Copyright

POP Project September 2017

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 676553.

Performance Optimisation and Productivity

A Centre of Excellence in Computing Applications

Contact:

Twitter: LinkedIn: Web: Email: @POP_HPC
POP group
https://www.pop-coe.eu
pop@bsc.es

For POP webinars and newsletter subscription see website

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 676553.

