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Executive Summary

This document reports the activities and results accomplished in terms of tasks T4.1 and T4.2
during the first t welve months of the project.

First, the four kernels developed in both tasks are presented, and their main characteristics
are listed.

Second, a few lessons taken from the audit effort are d etailed: four case studies related to
patterns and best practices, two notes related to programming models and finally one summary
of our collaboration with other CoE.

Third, our methodology for cooperating with EPI projects (RISC V and Rhea) is presented.
This covers the experimental methodology developed to generate results and analyze them as
well as the various hardware platforms and software tools (simulators, compilers, ...) used.

Fourth, our kernel evaluation results are presented. The two kernels selected (Sparse Matrix
Vector multiply and Lattice Boltzmann Computations), turned out to be very challenging both
from a hardware point of view and also from a compiler point of view. In particular, both
kernels clearly revealed many deficiencies of current compiler t echnology and uniformly across
several major compiler providers (ARM, INTEL and GCC/GFortran). Our findings have been
shared with both RISC V and RHEA teams. In particular, with RHEA, our kernels have been
tested on their in-house compiler. In both cases, our detailed performance analysis led to very
fruitful interactions and will drive further work to improve the performance of these two kernels.

From a deliverable standpoint, Table 1 shows the defined KPIsto be reached until M 12 of
the project and their current state.

KPI M12 Goal | M12 Reached
Kernels created 3 4
Technical pages created 7 7
Kernels evaluated 2 3

Table 1: KPIs for the MS5 Codesign 1 milestone

All the indicators were reached with a slight overachievement.
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1 Introduction

The overall objective of WP4 is to enable codesign with Exascale architectures and applications
in general, and the EPI in particular, while continuously improving the performance assessment
methodology and the corresponding tools. The particular objectives of the codesign tasks T4.1
and T4.2 are:

e To create a set of resources that could be leveraged by application-, programming model-
and system designers to guide its own development.

e To provide valuable guidance for the EPI hardware and software ecosystem based on the
kernels and applications analysed in the project.

Task 4.1 Codesign resources started at M6 and will continue till the end of the project.
Within the consortium, the partners IT4IQ@QVSB, BSC, USTUTT, INESC-ID, and RWTH par-
ticipate in it. The task synthesizes potential HPC application performance problems, develops
corresponding solutions, and makes these available to the HPC community. It includes three
main activities: (1) the development of new kernels that codesigning users may leverage for their
codesign activities, (2) the continuous update of the technical content included in the POP code-
sign website; and (3) POP codesign website extension and maintenance. The main sources for
technical pages (articles on the POP codesign website) and kernels are the HPC applications
we work with in WP3 in form of performance assessments and second-level services.

The activities in this task are not limited to the creation of new content but also include
the enhancement of the existing ones, so the task continuously refactors existing technical page
descriptions where needed, includes new experiments to the already uploaded kernels, especially
those used in the EPI codesign task.

Task 4.2 EPI codesign started at M1 and will be pursued till the end of the project by the
partners UVSQ, BSC, USTUTT, and RWTH.

This task provides input/feedback from the application perspective to the developers of the
hardware/software platform within EPI, the European Processor Initiative, and the two Eu-
ropean Pilots (the EUPILOT and EUPEX). Within EPI, two target architectures have been
selected: RISC V accelerators (project led by BSC) and RHEA (processor developed by Si-
Pearl). Both projects have different development strategies and therefore we used different
methodologies to carry out codesign activities. For the RISCV codesign, applications of inter-
est will be executed on simulators, SDVs (Software Development Vehicles) or early prototypes
to provide direct feedback to the development groups, addressing both the system performance
and the system software. The Sipearl project is using an ARM Neoverse V1 core for which,
implementations are already available (AWS Graviton 3) with a full software stack (compilers,
libraries). For codesign activities on RHEA, we decided to focus our efforts first on the compiler
side and second on testing not only Graviton 3 but also close by ARM cores (Neoverse V2 and
Neoverse N1). To get a full performance picture of the competition, we also systematically
tested recent INTEL X86 processors.

The developed kernels and technical pages are published in their full detail on the codesign
section of the project website!. The shortened descriptions of the achieved results follow in the
next sections. At the moment, the SPMXV and LBC kernels are accessible through these links:

e https://gitlab.pop-coe.eu/kernels/spmxv/

e https://gitlab.pop-coe.eu/kernels/lbc/

1https://co-desigm.pop-coe.eu
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The document is structured in six major sections. After Section 1 is devoted to the intro-
duction, section 2 presents the main kernels developed both in T4.1 and T4.2. Section 3 will
describe the effort carried out on Technical Page D evelopment. Section 4 will present codesign
methodologies used in the 4.2 task. Then Section 5 will review the results obtained through the
detailed evaluation of the 4.2 kernels. Finally, conclusion and future work will be described in
section 6.

2 Kernels development

Between Tasks 4.1 an,d 4.2, The rationale for kernel selection is different and complementary.
In Task 4.2, kernels are code fragments (potentially artificial) w hich w ere s elected b ased on
well-known performance issues that were repeatedly observed during performance analysis. In
Task 4.2, instead, we decide to select full algorithms (here Sparse Matrix-Vector Multiply and
Lattice Boltzmann computation) which have been chosen because they are widely used in various
scientific ¢ omputations. By t he way, due t o t his heavy use, some oft he algorithms c an have
some specific implementation in vendor libraries (MKL, ARMPL).

2.1 GPU affinity

This kernel (program) reproduces performance issues due to GPU affinity. It re peatedly per-
forms a single precision « times x plus y (SAXPY) operation:

Y+—ar+y

It uses OpenMP target offloading to repeatedly perform this operation on the GPU. Further,
it uses MPI to divide huge vectors into smaller parts and computes them in parallel. Each MPI
process uses one device to compute its partial result.

2.2 Pils

Pils is a synthetic code which allows to play with multiple MPI processes, each of them with a
different workload parallelized with OpenMP. The program allows you to configure the workload
per MPI process, the grain of the OpenMP parallel region, the number of steps to execute, etc.

This program is an isolated version of the Pils test included within the DLB distribution.
Further information on https://pm.bsc.es/d1b/.

2.3 SPMXV

The SPMXYV kernel implements the multiplication y < Az of a sparse matrix A and a vector
x. The algorithm for the SpMXYV operation is outlined in Figure 1.

The memory bandwidth is the limiting factor in the SpMXV kernel, as by using a sparse
matrix data structure the memory accesses become more random. The sparse matrices used in
this kernel are stored in the CSR (Compressed Sparse Row) format. To compute the resulting
value for matrix row r, the corresponding matrix values have to be loaded. CSR is efficient
in the aspect that for the sparse matrix-vector multiplication, the matrix values are stored
consecutively in memory, i.e., the n values of an arbitrary row r are stored consecutively as
(a(i),...,a(i + n —1)). Hence, reading from the matrix has high spatial locality, but again
every element is read only once. The elements of the right-hand side vector = also have to
be loaded, but here the memory access pattern depends on the matrix structure. For every

7
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for:=0ton—1do
sum 0
rowbeg + Arowli]
rowend + Arow(i + 1]

for nz = rowbeg to rowend — 1 do
sum + sum + Aval[nz| - x[Acol[nz||
end for
yli] + sum
end for

Figure 1: SPMXYV kernel

matrix element a(i), the column is stored in a separate vector named col at the same position
1, again resulting in consecutive access to col. However, access to x is random, as the position
i of x(i) is determined by the value of col(i). Consequently, the reuse of the elements in the
vector col from the cache is only successful for blocks/bands in the matrix, resulting in a low
spatial and temporal locality of this part of the operation. Finally, SPMXYV is by far the most
time-consuming operation in a GMRES (or similar iterative) method.

The main parameters for the SPMXYV kernel are the size of the matrix and the vector as
well as the structure of the used matrix. While the size increases the outer loop, the number of
non-zero elements in a row determines the iteration count of the inner loop. Depending on the
structure of the matrix this may vary and therefore result in a load imbalance.

The kernel can be found here: https://git-ce.rwth-aachen.de/hpc-public/epi-spmxv/

24 LBC

The Lattice Boltzmann kernel simulates a 3D vortex shedding around a cylindrical geometry
at a low Reynolds number. The computations are performed using double floating-point pre-
cision. As a particle method, the kernel discretizes space into a 3D structured grid (a lattice),
time according to the CFL condition, and velocity into a number (here, 19) of fixed flow direc-
tions (see Figure 2). This results in each lattice holding a particle distribution function (PDF)
F(velocity, space) that describes the flow and allows one t o r ecover variables such as velocity
and momentum using simple integrals over these distribution functions and known weights.
This results in the well-known D3@Q19 model, where the grid is traversed, and the new distri-
bution function values are then calculated only depending on old grid values. The three main
components of the kernel are first the streaming part, where t he distribution functions from 19
neighboring lattice sites are pulled, second the calculation of macroscopic variables, and third
the collision step, where an operator is executed, calculating the new distribution function and
storing the new grid.

The code is written in Fortran. The distribution function is stored as a 4D array in one of
two forms: F(q,1,j,k) or F(i,7,k,q), where g denotes velocity and the other three coordinates
denote a lexicography numbering of the grid. Since Fortran is column major the first layout
presents more of a ‘structure of array’ type pattern where each lattice point stores the velocity
vectors contiguously, as opposed to the second layout, which includes the spatial coordinates in
the most rapidly changing dimension.

The code is parallelized with MPI, and uses a simple blockwise domain decomposition.
Code and some documentation are available at the Git repo: https://code.hlrs.de/SPMT/
1bc-pop3/.


https://git-ce.rwth-aachen.de/hpc-public/epi-spmxv/
https://code.hlrs.de/SPMT/lbc-pop3/
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Figure 2: LBC Computational pattern

3 Technical pages development

One of the goals of the codesign resources task is to publish the finished r eports (outputs of
the assessments) to the codesign website. Only the reports that are approved by the owner of
the assessed code through the post-assessment questionnaire can be published. We publish the
reports in batches every 6 months to minimize the overhead - the first set of 3 approved POP3
reports was published in M7 and we expect to publish another set of new reports in M13 after
the recent questionnaires submission.

In addition to the newly published technical pages described below, the back-end functional-
ity of the codesign website was enhanced, too. To understand the relations among the content of
the website, consider the following hierarchy. Each kernel page (named program in the context
of the website) of the programs collection contains links to 2 or more program version pages,
typically 1 page for an original version showing a performance issue (a pattern) and 1 page
for the optimized version implementing the solution of the issue (a best-practice). Originally,
each of the version pages included a link to a separate experiment page containing specific
performance details of the version, e.g., POP performance metrics evaluation, profiles, or trace
visualizations. Both the new technical pages development and some of the topics developed
during the previous phase of the project exposed the need for side-to-side comparison of the
performance data from both versions on the same page. This feature was newly implemented
and already used, e.g., for the Parallel File I/O or the Pils kernels.

3.1 Patterns and best-practices

The following patterns and best-practices are the generalized descriptions of performance issues
and their corresponding solutions related to the kernels 2.1 and 2.2.

3.1.1 Poor GPU data transfer rate

Most CPUs are organized in multiple NUMA domains. Accessing different parts of the memory
from a certain core of such a CPU therefore has different p erformance. We call t his affinity.

9
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Since each available GPU on a system is connected to a NUMA domain this effect also is
observable in data transfers from and to the GPU. Depending on the location of the data on
the host side and the core that is handling the data transfer, both bandwidth and latency can
vary significantly.

If we launch one MPI process per available GPU without specifying where the MPI process
should run, the trace of such an application may look like the trace in Figure 3.

Master thread:0

Master thread:1

Master thread:2

Master thread:3

Figure 3: An example of a trace manifesting the poor GPU data transfer rate as a load imbalance
issue.

We can see that the first process finishes faster even though the computational load is the
same. This is due to the faster CPU-to-GPU transfers that are available on the MPI process with
rank 0 as it was executed on the NUMA domain the used GPU is connected to. However, the
MPI processes with rank 2 and 3 execute on socket 0 while the associated GPUs are connected
to socket 1. This heavily increases the runtime and results in a load imbalance.

3.1.2 Appropriate process/thread mapping to GPUs

Using the correct CPU cores to handle data transfers to and from the GPU can have a significant
impact on the performance. Especially with large data transfers the bandwidth differs heavily
between different N UMA d omains and G PUs. T hisisduetothe fact t hat on m ost systems
GPUs are connected to a NUMA domain and therefore have a NUMA affinity. Choosing
appropriate cores to handle the GPU transfers can be achieved on multiple levels and depends
on the programming paradigm used.

e During the job configuration, job scheduling system (e.g. SLURM, PBS) parameters may
be used to set the correct affinities.

e Environment variables may be used to configure runtimes such to map cores and GPUs
appropriately.

e Wrapper commands can be used to restrict the execution to certain cores (e.g., taskset).

e Directly in the code calls to libraries such as nvpl can be used to obtain the necessary
information. Then the developer can handle the mapping directly in the code (e.g., with
the OpenMP device() clause)

Which of these possibilities to ensure a correct mapping between CPU cores and GPUs
should be used depends on the hardware resources and the runtimes used. Some clusters provide
detailed information about this topic and how to configure jobs on it. If this information is
not given by the provider, it can be obtained with vendor tools such as nvidia-smi or rocm-
smi. These tools can provide information about the hardware topology and help identify GPU
affinity.

When binding the launched MPI processes to the appropriate NUMA domains that corre-
spond to the used GPUs, we can see that the load balance improves, as shown by Figure 4. The
total runtime also improves by 20% in this example and the next iteration starts earlier.

10
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Muslor Fnssiotl

Mastar tread:l

Mester iead:2

Mastar thraad:3

Figure 4: An example of a trace manifesting the improved load balance applying the appropriate
process mapping to GPUs.

3.1.3 Load imbalance in hybrid programming (MPI+4X)

Load imbalance is a longstanding issue in parallel programming and one of the primary con-
tributors to efficiency loss in high-performance computing (HPC) sy stems. It occurs when the
execution time required to complete the workload assigned to different processes varies, meaning
some processes finish faster t han o thers. W hile t he m ost h eavily 1 oaded p rocesses c ontinue to
compute, the less loaded ones are idle, waiting for the next synchronization point, thus wasting
computational resources and reducing overall efficiency.

In Figure 5 we can see a trace showing the useful duration of two MPI processes with two
threads each. The first process finalizes it s ex ecution early be fore th e second one and it s two
threads are idling while the second process still executes its corresponding code.

337,762 00 657,746 _94

Figure 5: An example of a trace displaying useful duration executing MPI+OpenMP dlb-pils
(2 MPI processes x 2 OpenMP threads).

Load imbalance can arise from various factors, and these can generally be categorized into
three main sources: algorithmic factors, system functionality, and system variability.

e Algorithmic Factors: Load imbalance can be inherent to the algorithm itself, particu-
larly due to uneven data partitioning or varying computational loads. A common example
is uneven data partitioning, where the amount of data assigned to each process differs.
Although mesh partitioning tools like Metis can be used to balance the data distribu-
tion, they often require heuristics to achieve optimal load balancing, which is not always
straightforward. Additionally, even if a partition is well-balanced at the start, it may
become imbalanced later in the execution. Computational imbalance can also arise in
scenarios like sparse matrix calculations, where the distribution of non-zero values across
processes is uneven.

e System Functionality: System-level factors can also introduce load imbalance. For
instance, differences in Instructions Per Cycle (IPC) due to variations in data locality
can lead to unequal workloads among processes. While code optimizations to improve

11
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data access patterns can mitigate this issue for specific hardware and input sets, such
optimizations may not be effective across different architectures or scenarios.

e System Variability: Hardware and software variability can also significantly contribute
to load imbalance. At the software level, factors like operating system noise or thread
migration between cores can lead to imbalances. At the hardware level, issues such as
network contention or manufacturing variations in components can cause discrepancies in
processing speeds, further exacerbating load imbalance. Since these types of imbalances
are difficult to predict and cannot be addressed through static methods, only dynamic
mechanisms can help reduce or manage their impact on performance.

To address load imbalance, several strategies are commonly used, each targeting different
aspects of the problem. Two major approaches are data-load balancing and computational load
balancing, each with its advantages and limitations.

e Data-Load Balancing: This approach involves redistributing the data among processes
to achieve a more even load distribution. It is one of the most widely used techniques
in current solutions, such as repartitioning the mesh (e.g., PAMPA) or redistributing
data (e.g., Adaptive MPI). However, data movement and mesh partitioning are costly
operations, making this approach more effective for coarse-grain load imbalance, where
large-scale redistribution can be tolerated. While effective, it can be computationally
expensive and may not address finer-grained load imbalances efficiently.

e Computational-Load Balancing: In contrast, computational load balancing focuses
on dynamically allocating more computational resources to processes with higher loads in
order to balance the overall execution time. This strategy is particularly useful for fine-
grained load balancing, as it allows for quicker adjustments compared to data movement.
Since shifting computational resources is generally less costly than moving large data sets,
this approach is better suited for situations where load imbalances are less predictable or
fluctuate frequently

3.1.4 Using DLB to compensate load imbalance

The Dynamic Load Balancing (DLB) library manages resource allocation within a computa-
tional node to address load imbalances in parallel applications. It operates transparently to
both the developer and the application, adjusting the number of threads assigned to different
processes as needed. Since this solution is applied at runtime, it can dynamically resolve load
imbalances that arise during execution.

DLB functions across all layers of the software stack, working in collaboration with each
to optimize resource utilization. It requires two levels of parallelism: the inner level is used to
enhance the resource efficiency of the outer le vel. In typical HP C applications, this means par-
allelism at both the distributed memory level (e.g., across nodes) and the shared memory level
(e.g., within a node). A common approach is to combine MPI (Message Passing Interface) for
distributed memory systems with OpenMP for shared memory systems, allowing the strengths
of both models to be leveraged.

Load imbalance can be particularly challenging in MPI applications because redistributing
or moving data between processes is not straightforward. Despite this, MPI remains one of
the most widely used programming models in HPC. DLB, however, is designed to be easily
extended to support other parallel programming models. The integration of DLB with MPI
is transparent to the application and user, leveraging MPI’s PMPI interception mechanism.
Coordination with OpenMP is based on their standard public API.

12
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DLB supports various load-balancing policies, with one of the most common being LeWI
(Lend When Idle). LeWTI operates by ”lending” computational resources (CPUs) from an MPI
process when it is idle, such as when waiting on a blocking call to another MPI process on the
same node. Meanwhile, other processes on the same node that are still computing can ”borrow”
these idle resources.

Under this policy, each CPU is owned by a single process, and ownership does not change
during the lifetime of the process. However, the owner can lend the CPU to other processes.
Importantly, only the owner of a CPU can reclaim it once it has been lent.

To use DLB, developers must include the DLB API in their code. While most DLB oper-
ations are automatically handled by the interception mechanism, certain tasks, such as calling
DLB_Borrow(), may require explicit programming. Additionally, developers must link with the
DLB library during the compilation process and preload it before running the application.

Figure 6 shows a trace executing the same program and inputset as in Figure 5 but in this
case DLB mitigates the imbalance problem by lending the unused threads from the first process
to the second one (additional threads in the trace).

Useful Duration B pils-dlb.prv

306,186.28

Figure 6: An example of a trace displaying useful duration executing MPI+OpenMP dlb-pils
(2 MPI processes x 2 OpenMP threads) with DLB enabled.

3.2 Programming models

The following programming models were briefly characterized and listed on the website to cover
the need originating from the new assessments and kernels being currently developed.

3.2.1 HIP

Cross-platform GPU programming without vendor lock-in enables greater cost efficiency and
makes applications more future-proof against potential hardware changes. Applications devel-
oped relying on the Heterogeneous-computing Interface for Portability (HIP) (https://github.
com/ROCm/HIP/) are capable of targeting AMD and NVIDIA GPUs through the vendor-specific
ROCm and CUDA platforms. Its API is designed to closely resemble CUDA, which eases con-
version from existing applications, either manually or relying on the HIPIFY translation tools,
as well as the development of new applications from scratch by minimizing the learning curve
for developers. Another feature of using HIP is that applications can be profiled and debugged
using AMD/NVIDIA tools.

3.2.2 OpenMP offloading

Since OpenMP version 4.0, the standard has introduced support for heterogeneous systems,
which consist of a host architecture and one or more external accelerator devices. The host
architecture is where the program begins its execution, while the target accelerators (such as

13
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GPUs) are external devices attached to the host, capable of executing portions of the compu-
tation. As a key feature, the OpenMP offload mo del en ables pe rformance po rtability across
different HPC clusters by abstracting t he user from d evice-specific architectures.

OpenMP facilitates offloading tasks to these accelerators using the target construct, which
allows both data and code to be transferred from the host to the target device for execution.
Additionally, OpenMP provides a set of specialized API routines for managing operations spe-
cific to devices, such as querying device information, handling data management, and managing
thread hierarchies. The standard also includes environment variables that can be set at runtime
to configure how t he device executes kernels.

The typical workflow for e xecuting k ernels on a d evice i nvolves t hree m ain s teps: 1) The
host maps its data to the target device’s memory environment; 2) The host offloads OpenMP
target regions to the device for execution, potentially reusing the data environment to execute
multiple regions; and 3) The host retrieves the computed results from the device and transfers
the data back to the host.

3.3 Projects collection

The one of main goals of the POP3 CoE is close collaboration with the other EuroHPC CoEs and
projects. With the growing number of performance studies coming from campaigns, meaning
that they target the specific CoE’s codes, there is a need for assigning t he published reports to
those projects for several reasons. E.g., the same code is developed and assessed under multiple
projects - the link helps with the identification of t he particular r eport. Some readers visiting
the codesign website might be interested in the subset of reports that belong to a particular
campaign or CoE. The following projects are currently identified:

e CEEC
e ChEESE 2
e CoEC

EXCELLERAT P2

MultiXscale

e SPACE

Figures 7, 8, and 9 illustrate the design and integration of the projects collection into the
codesign website.

14
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[2Y(1Y) Performance Optimisation and Productivity

A Centre of Excellence in HPC

Home / Resources for Co-Design / Projects
. .
. List of EU Projects
Partners.
Services ChEESE 2
Reguest Service Form ChEESE is the Centre of Excellence (CoE) for Exascale in Solid Earth and aims to become a hub for HPC software within the
solid earth community.
Metrics
Patterns CoEC
Best-practices The CoEC (i.e., Center of Excellence in Combustion) has been created in order to apply exascale computing technologies to
= promote and develop advanced simulation software that can support the decarbonisation goals of the European Union
rograms
within the energy and transportation sectors.
Languages
Models
MultiXscale
Disciplines
MultiXscale - a EuroHPC JU Center of Excellence involves 16 consortium partners who jointly develop multiscale simulation
Algorithms.
o software to solve societal challenges associated with biomedicine, the transition to sustainable energy, and civil transport
Reports by supercomputers.

Figure 7: The new Projects collection listing the EU projects with a connection to the published
assessment reports.

[2)(1 Y ) Performance Optimisation and Productivity
A Centre of Excellence in HPC

Home / Resources for Co-Design / Projects / Coec

CoEC

Partners

The CoEC (i.e., Center of Excellence in Combustion) has been created in order to apply exascale computing technologies to
Services promote and develop advanced simulation software that can support the decarbonisation goals of the European Union
Request Service Form within the energy and transportation sectors.

Related report(s):
* ClAO

Metrics

* Yales2
Patterns

* NEK5000
Best-practices

* Alya
Programs
Languages
Models
Disciplines

Algorithms.

Reports

Figure 8: The detail of an EU project item from the new Projects collection listing the related
code assessment reports.
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Performance Optimisation and Productivity

A Centre of Excellence in HPC

Home / Resources for Co-Design / Reports

News List of Reports

Partners
Here you can find the complete list of all reports developed throughout this project. Specifically, you will find reports related

Services to the POP1 and POP2 projects. These reports are classified as Assessment Reports (AR), Performance Plan Reports (PP)

Request Service Form and Prof-of-concept Reports (PoC).

Report name Project Type Languages Models Project
Metrics CIAO POP2 AR C- Fortran - MPI - CoEC -
Patterns MONARCH POP2 PoC Fortran - MPI -

Best-practices FoXtroT POP2 AR Ct - OpenMP -

Programs Yales2 POP2 AR Fortran - MPI - CoEC-

Languages Simple Finite Elements (SIFEL) POP2 AR C-Ct++- MPI -

Models openfoam/ASHEE POP2 PoC CHt - OpenMP -

Disciplines ExaHype2 POP2 AR C++ - Python - MPI - OpenMP -

Algorithms NEK5000 POP2 AR C- Fortran - MPI - CoEC -
Compressible immerflow POP2 AR CH++ - MPI - OpenMP -

Projects CHIMERE POP2 AR C++ - Fortran - MPI -

Figure 9: The table with the published assessment reports extended by the Project column
linking the reports with their projects.

4 EPI Methodology

4.1 RISCYV

The EPI RISC-V methodology is defined by t hree d ifferent co mponents: th e target platforms
(including the performance reference platforms), the tool-chain (all the components in the soft-
ware stack used in the codesign analysis), and the methodology plan (a sequence of studies to
carry out the analysis).

In terms of the RISC-V platforms, we are using;:

e HiFive Unmatched: This scalar core (four cores per socket) running at 1.2 GHz is our
development platform and reference for performance studies. It shares the file system
through NFS with the other platforms.

e Pioneer MILK-V: The nodes of this system are based on the SOPHON SG2042 pro-
cessor and constitute a more recent design with up to 64 cores per socket, supporting the
RVVO0.7 ISA at 2.0 GHz with a very short vector length of 128 bits. This makes it a great
comparison platform for a very different design point to our EPI long vector architecture.

¢ EPAC_1.5@QFPGA: This is the EPAC text chip produced in EPI-SGA2. The chip
implements the RVVO0.7 ISA with MAXVL of 256 doubles (16K bits). We can run a full
Linux image with access to the shared file system through NFS. We can run it at 333 MHz
or 1 GHz. The memory bandwidth is limited due to an issue in the chip’s PHYs. The
system is fully functional and in a sense experimenting with the two frequencies we can
evaluate the behavior of the core micro-architecture under long memory latencies. Being
the memory latency tolerance one of the key design visions of the EPI (when combined
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with long vector executions), this constitutes a very interesting evaluation point in the
design space.

e FPGA-SDV: This system implements the current RTL of the EPAC core on an FPGA
running at 50 MHz. This emulator runs Linux at sufficient frequency for a reasonable
interactive performance. We can certainly argue that the high memory bandwidth is pro-
vided by real DRAM devices while the processor clock is only 50 MHz. We should be also
aware that the memory controller is run at 50Mhz, thus resulting in a memory subsys-
tem only partially over-dimensioned. Additionally, the environment supports changes in
the memory subsystems such as throttling the memory bandwidth or dilating latency by
adding the desired number of cycles. The platform provides relatively detailed observabil-
ity of micro-architectural signals at different levels, including graduating program counter
and vector instruction at the top of the reorder buffer, L2 cache hits and misses, and data
transfers between scalar and vector core for example. Waveforms for half a million cycles
can be captured.

The different platforms constitute a great infrastructure to evaluate and compare a fairly
wide set of design points and gain insight useful for improving the EPI design. It would certainly
be also interesting to have detailed micro-architectural observability for systems other than the
FPGA-SDV. This is the very first insight deriving from the EPI experience and the study
presented below.

Concerning the tool-chain, we are using;:

e LLVM/Clang 12.0.0: The compilation chain developed within the EPI project. At the
same time it is an enabler to generate the binaries we will use in the codesign experiments.

e LLVM /Clang 20.0: The new compilation chain used within the EPI project to specifi-
cally generate RVV 1.0. That tool-chain is used exclusively in the RAVEQQEMU studies
when targeting the new vector specification for RISC-V

e Extrae 4.2.0: The generic BSC Tools instrumentation package is available in all the
platforms and can be used to get Paraver traces at the level of code regions/functions,
including hardware counter information. These traces include a lot of detailed metrics,
which can be analyzed and visualized using Paraver.

e Ila2prv (latest: 2024-11): This tool works on the FPGA-SDV waveforms, translating
them to the Paraver format supporting extremely detailed analyses being applied to them.

e RAVEQQEMU (latest: 2024-11): This QEMU plugin can generate Paraver traces
with instruction sequences (vector and/or scalar) and information such as vector lengths,
registers used or memory address patterns. Even if it does not include actual timing, just
the count, or sequence of instructions is very useful for architectural codesign.

Finally, the methodology plan is currently defined by:

e Elapsed time study, it gives as the result the timing and some aggregated information
derived by the application itself (e.g., computed throughput, bandwidth, etc.). In order to
fairly compare the different platforms, we report if possible the normalized performance
per cycle of the platform.

e Extrae study, it provides a deeper level of detail. It may contain traces, histograms,
and aggregated POP metrics.
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e Architectural study After this initial exploration, the codesign analyst may decide to
continue the analysis following two different paths (not mutually exclusive):

— RAVE@QQEMU, it offers details on how the program behaves on a generic RISC-
V architecture. Running on top of RAVEQQEMU the programmer simulates the
vector instructions on top of a RISC-V QEMU virtual machine. The resulting trace
provides insights into the functional behaviour of the compiler-generated code.

— Waveform, ILA traces, it provides the specific behaviour of the RISC-V instruc-
tions on top of the codesign target architecture.

4.2 RHEA

High compiler quality, i.e., the performance of the generated CPU code, is of primary impor-
tance in particular for newcomers on the market such as SiPearl. SiPearl is developing the
processor RHEA based on an ARM Neoverse V1 core interfacing with a combined High Band-
width Memory (HBM) and traditional DDR5 memory system. As a companion effort, SiPearl
is also building a software stack environment including a specific c ompiler based on LLVM to
take full advantage of RHEA architecture.

Our goal is to support SiPearl’s effort in t he compiler area, in particular identifying worth-
while optimizations as well as counterproductive ones and correlate them with context. For
that goal, we develop specific technology to quantitatively and comparatively assess the quality
of the generated CPU code. The main goals are first t o identify weaknesses (mistakes) in the
CPU code generation process and second to compare different c ompiler o utputs, T henasa
final step, we t ry t o b ackport b etween c ompilers, o ptimizations w hich h ave b een m issed: for
example, for the same loop, Compiler A might have failed to vectorize (due to a poor data
dependence analysis) while compiler B (using a more advanced analysis) might have succeeded.
The comparative analysis has to be carried out not only between compilers but also between
options/flags for t he same compiler.

For achieving this detailed compiler output analysis, we rely on MAQAO toolset which will
provide us first with detailed profiling analysis at 3 levels (whole application, function and loop).
This 3-level analysis is essential because it allows us to detect in comparative studies the main
location of performance difference b etween ¢ ompiler o ptions or ¢ ompilers. U nfortunately, it
does not reveal the main issues: compiler mistakes leading to CPU code with low performance.
For this latter objective, we used MAQAO detailed binary analysis combining static analysis,
simplified s imulations and m easurements. S uch an analysis d etects c ompiler d eficiencies and
estimates related performance impact.

In our testing, initial performance testing has been carried out by the kernel author on a
limited number of systems: such results will be reported in the subsections “Initial Performance
Assessment”. Then we will perform systematic performance testing on various ARM-based
platforms (Graviton 3E, Graviton 4, Ampere Altra, Grace) with different ¢ ompilers: GCC/G-
FORTRAN, ACFL (ARM Compiler for Linux based on LLVM). For each compiler, several
options were also tested but for the sake of simplicity only -03 and -0fast will be reported.
The three instruction sets (NEON, SVE, SVE2) have been systematically tested and evaluated.
Additionally, two X86-64 systems were used as references using the new OneAPI compilers
(combining LLVM and INTEL technology) and the old intel classic compilers which have re-
markable vectorization capabilities. All of the system details (number of cores, cache sizes) and
compilers (names and versions) used are listed in Figures 10 and 11.

All of the kernels (source code) and performance results have been shared with SiPearl.
SiPearl’s compiler group tested their in-house compiler technology on the kernels and sent us
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back the obtained results. This cooperation effort will be pursued during the whole project.

Model Name Frequency | Number of | Number of | L1D L1l L2 L3 L3/Core

(GHz) cores/socket| sockets (KB) | (KB) | (KB) | (MB) (MB)

Skylake Xeon Platinum 8170 UVSQ 2.1 26 2 32 32 1024 | 36 1,38

= Sapphire Rapids Xeon Platinum 8470 2 52 2 48 32 2045 | 104 2.00
Neoverse N1 Ampere ALTRA Q80-30 CALMIP 3 80 1 64 64 1024 | 32 0,40
Neoverse V1 G3E AWS 26 64 1 64 64 1024 | 32 0,50
Neoverse V2 G4 A2WS 28 96 1 64 64 2048 | 36 0,38
Neoverse V2 GRACE IT4l 3,1 72 2 64 64 1024 | 114 1,58

Figure 10: Hardware configurations tested

System Compiler Version
GNU 132
Skylake Xeon Platinum 8170 UVSQ
OneAPI 20242
GNU 132
Sapphire Rapids Xeon Platinum 8470 MEGWARE
OneAPI 20242
GNU 122
Neoverse-N1 Ampere ALTRA Q80-30 CALMIP
ACFL 23.10
Neoverse-V1 G3E AWS GNY 12.2
ACFL 23.04
Neoverse-V2 G4 AWS GNU 14.2
ACFL 2410
Neoverse-V2 GRACE IT4l GNY 121
ACFL 24 .04

Figure 11: Compiler versions tested
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5 Evaluation and analysis

5.1 JUKRR kloop

The Juelich KKR code family (JuKKR) is a collection of codes developed at Forschungszentrum
Juelich implementing the Korringa-Kohn-Rostoker (KKR) Green’s function method to perform
density functional theory calculations. Since the KKR method is based on a multiple scattering
formalism it allows for highly accurate all-electron calculations. For more details see https:
//co-design.pop-coe.eu/programs/jukkr-kloop/index.htm

Given the availability of the JuKRR code in the POP codesign resources repository, we
decided to use it as a starting point for the EPI codesign activity in POP3.

5.2 JuKRR on RISC-V

Being an application unknown to the POP3 RVV codesign team, we started trying to run it in
MareNostrum 5 as a first step t o identify its s tructure and b asic ¢ haracteristics. T he code is
written in FORTRAN, the build system is based on CMake and uses OpenMP for parallelism
within a node. We obtained Extrae traces of a first version of the c ode. A timeline view of the
code is presented in Figure 12. As can be seen, long parallel regions were not yet parallelized and
MKL seems to be used intensively in other regions. A second version of the code was also run
showing a fairly different behaviour (Figure 1 3). In this case, the whole run is far more parallel
but the analysis of the cache misses revealed the code fitted in t he L 2 cache of Marenostrum,
which was interpreted as the kernel being an oversimplification of a more realistic ¢ ode. Taking
also into account that the FORTRAN compiler development effortsin EPI target the RVV 1.0
ISA and that the RVV 1.0 FPGA-SDV was not yet available we decided to focus our codesign
studies effort on the SPMXV code (see Section 5.5), leaving JuKKR for later analysis on the
RVYV platforms.

e Line @ test_Kloop.orig.s.prv

Large non
parallelized
part

| Intensive use
of MKL

rce Line @ test_Kloop.orig.s.prv

O end
B o (unresolved)
— M o (_trsm.c, libmkl_intel_thread.so0.2)

Figure 12: Timeline showing the structure (parallel functions) of the OpenMP parallelization
at Marenostrum 5 for the first version of JuKRR.

parallel functions source line @ test_kloop.x.prv

THREAD 1.1.1
THREAD 1.1.2
THREAD 1.1
THREAD 1.
THREAD 1.
THREAD 1.
THREAD 1.
THREAD 1.1.8

Oend

M 539 (bz_integrand.F9e, test_kloop.x)
W 949 (bz_integrand.Foe, test_kloop.x)
B 1016 (bz_integrand.F9e, test_kloop.x)

I

Figure 13: Timeline showing the structure (parallel functions) of the OpenMP parallelization
at Marenostrum 5 for the refactored version of JuKRR.
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5.3 JuKRR on RHEA

The original JuKRR code has a very peculiar behaviour. As mentioned in the original POP2
JUKRR analysis, it scales up very poorly. Our runs on a Graviton 3E with 64-core showed
exactly the same behaviour: a 64-core run hardly achieves a speedup of 1,5 over a single-core
run (see Figure 12). Furthermore, the time spent in OpenMP is regularly increasing when
increasing the number of cores.

50.00
45.00] B System [ Binary B Memory I OMP (M String [l 10 | Others B Math [ Pthread r0: 1 core,
rl: 2 cores,
r2: 4 cores
r3: 8 cores,
= r4: 16 cores,
E r5: 32 cores
ré: 64 cores
0 o 7 4] L] ] 6
Metric ro r r2 r3 r4 s 6
Total Time (s) 41.30 26.83 20.10 17.15 16.35 16.85 24.04

(s) 4125 2663 19.87 17.10 1614 1662 23.78

Figure 14: Performance of Original JuKRR: scalability test on a 64 cores Graviton 3E

50.00-
ss00. | M| System M Binary M Memory [l OMP [l String Il 10 M Others M Math B Pthread

o r0: 1 core,
. rl: 2 cores,
00 r2: 4 cores
E 2 r3: 8 cores,
" oo rd: 16 cores,
15,001 r5: 32 cores
e ré: 64 cores
5.00
0.00
Ly jal 3 a L n ®
Metric o rl r2 3 r4 s 6
Total Time (s) 41.24 20.61 10.38 5.25 2.70 1.43 0.81
Profiled Time (s)
Time in analyzed loops (%) 3.69 4.09 3.95 3.62 3.94 4.11 3.94
Time in analyzed innermost loops (%) 3.34 3.77 3.70 3.22 3.49 3.81 3.63
Time in user code (%) 3.85 4.29 4.04 3.76 4.13 4.26 4.04

Figure 15: Performance of Optimized JuKRR: scalability test on a 64-core Graviton 3E

The optimized version developed during the POP2 project moves the parallel region to
an upper level. This version performs much better (see Figure 15: the speedup on a 64-core
Graviton 3E is now over 54. With this optimized version, the time spent in OpenMP is now
negligible. Now, on the other hand, more than 90 percent of the time is spent in ZGEMM
(dense matrix multiply operation) performed using the ARMPL library. So to some extent, the
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optimized JuKRR kernel ends up being simply a test of Dense Linear Algebra. Furthermore,
the matrix sizes are large enough so the library achieves good performance.
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5.4 SPMXYV Initial performance assessment

The Sparse Matrix-Vector (SPMXV) kernel analyzed in this section corresponds to the imple-
mentation presented in Section 2.3. The structure of this code corresponds to a set of nested
loops traversing the matrix layout, collecting the elements in a single row (expressed in CSR
format) and computing the result via the reduction of a scalar value.

The SPMXYV kernel was tested on two systems:

e A dual-socket Intel Xeon Platinum 8468 (Sapphire Rapids) system (2x48 cores, 2.1 GHz)

e A single socket Nvidia Grace CPU (1x72 cores, 3.0 GHz)

With approximately 5 percent, both systems reached a similar fraction of their theoretical
peak performance (see Figure 17. The theoretical peak performance of the systems was calcu-
lated using their available FMA streams: Ppeak= Cores x 64bit FMA instructions per cycle x
frequency As figures 16 and 17 show, the achieved maximal performance does not depend upon
the compiler except for the Intel CPU, where the GCC compiler lags behind the Intel compiler
(explanations are given in the detailed analysis).

300 +

250 4

200 4

150 1

Average Perfoance [GFlops]

100 4

50 1 EE Intel(R) Xeon(R) Platinum 8468
NVIDIA Grace CPU
AMD Milan 7513 CPU

T T T T T T
icpx icpx g++ clang++ g++ clang++ clang++ g++ icpx
2023.2.0 2022.2.1 13.2.0 16.0.0 13.2.0 18.1.2 17.0.3 12.2.0 2022.1.0

Figure 16: GFlops performance of SPMXV kernel

Further, the code was evaluated against BLAS like libraries that implement SPMXV on
the Grace CPU. The tested libraries, ARM PL and Nvidia PL, reached around 3% of the
peak performance on the Grace CPU with the given matrices. The developed SPMXYV kernel
outperforming the architecture-specific libraries indicates the lack of highly optimized SPMXV
libraries on the ARM Neoverse V2 architecture so far. However, other libraries that implement
SPMXYV have not yet been evaluated.

Finally, the behaviour of the kernel was tested as the size of the problem increased (see
Figure 18. The similar cache sizes on both machines lead to a similar scaling behaviour, with
a performance drop at the L3 cache size line. However, with very large matrix sizes where the
matrix does not fit into t he L 3 cache, t he Grace CPU provides b etter p erformance compared
to the Sapphire Rapids.
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Figure 17: Fraction of peak performance for SPMXYV kernel
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Figure 18: Impact of Datasize on SPMXYV performance

5.5 SPMXYV on RISC-V

In this section, we present the complete study of the SPMXV kernel for the EPI RISC-V
architecture. The nature of this kernel allows us to explore different aspects of this code (e.g.,
gathering sparse elements or computing partial reductions) for the RISC-V vector extensions.
In the following subsections, we will explore the elapsed time behaviour and provide further
insights using Paraver traces for different RISC-V a rchitectures. The study will also include the
architectural profile of this kernel execution allowing to reach the assembly level of the ISA.
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5.5.1 SpMYV Elapsed time study

Following the described methodology, the first step was to compile and run the source code on
the different p latforms. To run on the HiFive and P ionner t he M akefile had to be ad apted to
use the proper compiler and compiler flags as well as | ibraries. The first run of the same binary
on the EPAC1.5 failed not findingt he O penMP L ibrary. A fter 1 oading t he p roper module
the run was successful. We interpret this experience as another codesign insight in the sense
that supporting standard environments (e.g., compiler, modules, ...) is a very important design
target.

F/c per platform
0,250

0,200

0,150
0,050 I

0,000
EPACL.5 EPACL1.5 FPGA-SDV FPGA-SDV Arriesgado Pioneer Pioneer
Scalar Vector Scalar Vector Scalar Scalar Vector
1GHz 1GHz

FLOPS/Cycle

o
=
o
o

Figure 19: Normalized FLOPS per cycle for the different versions of the code (scalar/vector)
and platform

The normalized performance (FLOPS/cycle) for the different platforms is reported in Figure
19. The best scalar execution performance is achieved by the Pioneer system. It is followed by
the FPGA-SDV system, which has around half its performance. The HiFive and EPAC1.5 fall
clearly behind. In the case of the EPAC1.5 we speculate that the high relative memory latency
has an important impact towards such low performance.

Regarding vector code, the performance shrinks by half compared to the scalar case for the
Pioneer, and about one-third in the case of the FPGA-SDV. In the case of the EPAC1.5 at 1
GHz, the performance is similar to the scalar performance.

The fact that the NNZ (Number of Non-Zero elements) is only 15, far below the design
target of EPAC would reinforce the interest in vectorization approaches that exploit longer
vector lengths for this problem.

Although the results are bad for the vector run, we need to understand why and get further
insight into how the design can be improved beyond moving towards longer vector lengths.

We also studied in terms of elapsed time, the performance when scaling the number of cores
in the available multicore platforms. The scaling results are shown in Figure 20. The results
show a change in the slope at 4 cores in the Pioneer platform and again at 16 cores, which
might be linked to the internal micro-architecture. Anyhow, the increase in performance with
core count seems to indicate that memory bandwidth saturation, something one typically would
suspect for an algorithm with low computational intensity, is not a real problem. A single core
not being able to use a relevant fraction of the memory bandwidth neither for a scalar nor vector
code is something we consider undesirable and something the EPI architecture should target.

Figure 21 shows the same numbers in terms of absolute performance in FLOPS/cycle where
we can compare the different p latforms. In the figure, we can observe that the vector code at the
FPGA-SDV with a single core results in about the same normalized performance as the 4 cores
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Figure 20: Scalar code OpenMP speedup with number of cores for the three multicore platforms
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Figure 21: Aggregated FLOPS per cycle when scaling the number of cores in the different
platforms

SiFive platform. This number should actually be larger, something we will further investigate
later in this document.

A final experiment we performed measures the impact of increasing memory latency on both
scalar and vector versions. This experiment can only be done in the FPGA-SDV platform. The
result is presented in Figure 22. It shows again the better performance of the scalar code under
the fast memory subsystem, something that will be investigated later. What we nevertheless
want to highlight at this point is the lower sensitivity of the vector EPAC architecture to memory
latency, one of the fundamental objectives of the EPI design.

5.5.2 Extrae study

The next level of the evaluation uses Extrae traces to get a deeper insight into the behaviour.
We instrumented the main phases of the code including reading the matrix, initializing data
structures and each of the invocations of the SpMV kernel. Besides that, we typically activate
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Latency impact
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Figure 22: Impact of additional memory latency on FLOPS per cycle for the scalar and vector
version of the code in the FPGA-SDV

Scalar Vector

Figure 23: Timeline (full run and zoom on the execution of 30 SpMVs) for the scalar and vector
version of the code at the same time scale.

the sampling mechanism every 10 milliseconds so that we can observe behaviour changes along
the run if they appear. The traces can be obtained for the scalar and vector codes on all
platforms. In Figure 23 we compare the timelines of phases for the scalar and vector runs at
EPAC1.5 1GHz, showing a somewhat faster scalar code. Quantitative metrics derived from the
traces are shown in table 24. We can see the number of instructions executed by the scalar code
is about 3.3 larger than by the vector code. Considering we expect every element computation
(matrix row by corresponding vector elements) to be vectorized and the known NNZ we would
probably have expected a ratio closer to 15. We need to investigate the binary code generated
for the vector code by the compiler. Also curious is that only 17 percent of vector instructions
are memory-related, while the source code has very low arithmetic intensity. The scalar IPC is
about 4.9 better than the vector IPC. Again, to break even we would expect the ratio to be 15.
The utilization of the vector unit (VPU) reported by the hardware counter is nevertheless very
high ( 0.93) even with less than 7.4 percent of instructions.

A similar comparison between the scalar runs on EPAC1.5 at 1 GHz and the EPAC FPGA-
SDV at 50 MHz is shown in Figure 25 and table 26. EPAC1.5 is 4.21x faster than the FPGA-
SDV even if the clock is 20x faster. A slightly higher number of instructions in the FPGA-SDV
platform may indicate the hardware counter mechanism is also counting the scalar instructions
executed by the sampling software within Extrae. This is a potential codesign input for the
tools/platform development/maintenance teams, although we do not consider it to be a very
important perturbation while producing very useful information.
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Arithmix VPUFP VPUFMA
Vec MIPS MIPS

duration Instr Cycles IPC Vec.Instr  VPU% L1_MPKI TLB MPKI

EPACLS Scalar 1GHz 760.8602 83274674 743042224  0.112 0 0.00 4713 2.02
EPACLS Vector 1GHz  1054.045 25031164 1074528228  0.023 1840824 0.93  408.30 4.16 0.83 414 0.69

Figure 24: Metrics for the Scalar SpMV code computed from the traces in the FPGA-SDV and
EPACL1.5 platforms

Fpga-sdv @ 50 MHz Epac1.5@ 1 GHz

Figure 25: Timeline for the vector version of the code on the FPGA-SDV and EPAC1.5 platforms
at the same time scale.

The IPC is significantly better in the FPGA-SDV case, most probably linked to the fairly
large memory latency in the EPAC1.5. The impact of this latency could be further studied
using the memory dilation features of the FPGA-SDV. This is done later in the document with
the waveform analyses.

We have not really analyzed the cache and TLB MPKIs. That is one of the aspects that we
should cover in future work for this study.

A final observation clearly apparent in the traces (Figures 23 and 25) is the very slow matrix
read. This matches the experience in the previous timing runs and suggests the importance of
implementing reverse offloading capabilities (further elaboration later in the document).

5.5.3 Architectural study

The next level of analysis is to look at waveforms (i.e., how the internal processor signals are
propagated over time) with cycle-level accuracy for half a million cycles at the FPGA-SDV.
For every run, we trigger the acquisition 9 times in sequence after the program prints the
reading of the matrix has finished. With t his m echanism, we obtain 9 waveform t races, which
is enough to capture the behaviour in the SpMV computation. In fact, we obtain in some cases
also waveforms from the initialization, which were also vectorized and can be used for further
codesign insight beyond the main computational kernel.

Figure 27 shows the PC along time of the graduating instruction for the scalar code run at
EPAC-SDV, Even if we have no access to the actual scalar instruction being executed, we can
identify the loop structure of the code and its correlation to external memory subsystem activity
like L2 cache hits and misses. The figure shows two loops, with 15 iterations of the innermost for
each of the outer iterations. This matches the source code structure where the innermost loop
corresponds to one iteration of the row computation and the outermost iteration corresponds
to one element (Row by vector). We can really see the impact of cache misses, representing a
global latency of 75 cycles and stalling the instruction graduation for that time.

The corresponding traces for the vector code are shown in Figure 28. Now we can see
the instruction at the Top of the Reorder Buffer (ROB) and a bunch of other metrics for one
iteration of the innermost vectorized loop which should correspond to one element (row by
vector computation). Many important observations are apparent from the figure. We certainly
see that the vector length of 15 is used in some of the main instructions, particularly loads
and gathers. Longer vector lengths are nevertheless used for other instructions. This derives
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duration Instr Cycles IPC Vec.Instr  VPU% L1_MPKI TLB MPKI
‘PGA-SDV Scalar 50MH 3208.15 86588848 153275531 0.565 0 0.00 35.66 0.83
EPAC1.5 Scalar 1GHz 760.86 83274674 743042224 0.112 0 0.00 47.13 2.02

Figure 26: Metrics for the Scalar SpMV code computed from the traces in the FPGA-SDV and
EPACL1.5 platforms

Inner iteration

Miss cost: 76 cycles
‘ ‘ | / 15 within outer iteration (nnz)

\ /

ﬂah

25,649 ns 25,917 ns

miss_any_hn @ spmv.scal.fpga-sdv.t1.56M.r30.6L.7_ext.prv.gz

ila

Figure 27: Program counter and cache hits/misses timelines of one iteration of the row loop in
the waveform for the scalar execution at the EPAC-SDV.

from the basic mechanism to implement reductions by the compiler. Being generic in case the
overall reduction to perform (in our case nnz in a row) is larger than the architecture MAXVL
(MAXimum Vector Length) it has to allocate a full register where to serialize intermediate
reductions and perform the final reduction at full vector length.

We also see vector lengths of 256 and 512 elements clearly pointing to mixed use of 64-bit
and 32-bit values.

In our case, the algorithmic vector length is less than MAXVL and thus operating at a
longer vector length is a certain overkill. We certainly see that the reduction instruction itself
takes an important percentage of the execution time.

Additionally, a vwcvtu? instruction takes a huge percentage of execution time. This instruc-
tion, as well as others (vid, merge, vmsltu, ...), are individually less expensive but still they
represent a huge aggregated percentage of elapsed time.

With this codesign insight, we are pushing the compiler team to modify the generic code
generation mechanism to avoid additional instructions and extended vector lengths.

About memory vector instructions we observe that vector loads execute in parallel with
some of the instructions added by the compiler for the reduction support. This explains the
reduced memory latency sensitivity observed in figure 2 2. Curiously, some of t he d ata accesses
by these load instructions are hits while others are misses. This is explained by the vector
length, where one load instruction requests 15 DP elements while a cache line has 8. Being
a small vector length and not multiple of the cache line results in those effects. For a longer
vector length we would expect larger proportions of the accesses to be misses and these are the
ones most people would expect to be the memory bandwidth bottleneck for the SpMV code.

The gather instruction (see Figure 28: vlxe) does not overlap with other arithmetic instruc-
tions. Its time at the top of the Re-Order Buffer (ROB) is larger than the time taken by loads
even if accesses are hits. The limited injection capability® of the gather implementation is the
fundamental limitation.

A final observation analyzing the traces is that the code uses 10 out of the 32 architected

20One of the RISC-V widening add instructions.
30nly one element per cycle can be at best injected into the register bank
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Figure 28: Several timelines for one iteration of the innermost loop of the vector execution. From
top to bottom: instruction at the top of the ROB, vector length, program counter, memory
operation, L2 misses, L2 hits and data being delivered to the vector unit.

vector registers. This value seems a bit high given the fundamental objects referenced at the
algorithmic level and is probably originated by the code generation scheme for reductions and
mixed data types. Even so, this provides useful codesign input for the compiler as it indicates
that unrolling could be used to increase the utilization of the register state and build larger
basic blocks that would allow for better instruction schedules and thus improve the overlap
between arithmetic and memory instructions.

Last committed PC @ spmv.scal.fpga-sdv.t1.56M.r30.300L.7_ext.prv.gz

1w [ J.mm sr
+ 300 98,214 fh= 99,883 MI
ast commifited PC @ sm.scalMseLJ_ext.prv.gz
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ila .n1{;—1mn YAV /l((mm AMMMIll’ AN

25,642 ns 26,511 ns

Figure 29: PC waveforms for 0, 100 and 300 additional cycles at the memory controller,
showing how that translates into a stall in the case of cache misses.

To better observe the impact of memory latency, we obtained the corresponding traces for
the case of 0, 100 and 300 additional latency in the memory subsystem. The results are shown
in Fig 29 for the scalar case and Figure 30 for the vector case. We observe that the scalar run
is highly sensitive to the additional latency, paying its full cost on every miss. In the vector
runs, the additional latency is only paid when it goes beyond the duration of the overlapped
non-memory instructions.

The above observations and comments have been presented to the compiler team of the EPI
project. The information proved useful for them and some of the topics have been included in
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Figure 30: Top of the ROB and memory operations execution timelines for 0, 100 and 300

additional cycles at the memory controller. Only for the 300 cycles case, the additional latency

translates into an elongation of the vector load instructions when at the top of the reorder
buffer.

their ongoing compiler extensions road map?; while other suggestions will be taken over for the
RVV1.0 target, but no backport will be done for the RVV0.7 ISA.
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Figure 31: Two iterations of instructions in the innermost vector loop. Timelines from top to
bottom show the actual vector instruction or indication of a scalar instruction, the last vector
program counter and the vector length.

To test how much the RVV1.0 eases code generation and how much of the discussed po-
tential improvements are already available in the RVV1.0 compiler we recently performed an
additional study based on the use of the RAVE 1.0 software emulation platform. Figure 31
shows a trace of the instructions sequence. It is apparent that the number of vector instructions
per iteration has drastically been reduced. We now clearly identify the two vector loads, the
gather, FMA and reduction, plus a vmvir and a vfmv instruction. Also interesting is that these
last three instructions execute with a vector length of 256, while the memory and FMA instruc-
tions execute with a vector length of 15. The number of vector registers used is five, leaving

4Resource and scheduling constraints
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opportunities for a large unrolling factor. These observations will now be discussed with the
compiler team.

Unfortunately, the FPGA-SDV implementing RVV 1.0 is not yet available to actually mea-
sure timing and waveform traces detailing the cost of the individual instructions. We hope this
to be soon available and will include further analyses in later deliverables.

A final very useful observation in this trace is that the long burst of scalar iterations between
two vector sequences of instructions is of 17 instructions. This is the look-ahead that the scalar
core should be able to tolerate in order to issue the vector instructions for the next iteration
while the previous vector instructions are still in operation. This is very useful codesign insight
for micro-architecture designers.

One of the observations we have mentioned several times is that the vector length in the
parallelization approach followed is very low (only 15) which even if fixing s ome o ft he code
generation issues detected would not efficiently use a microarchitecture designed for significantly
longer vectors (256). From our point of view, this is codesign insight in the direction of adapting
the algorithm to expose longer vectors. This can be done with other matrix formats. In a
previous work, we explored the potential of the shell-c-sigma format supporting longer vector
lengths. The basic idea of the approach was to operate on a block of rows at a time (typically
matching the MAXVL of the architecture) and serializing the reduction. It was also written with
intrinsics, avoiding the additional instructions included by the compiler. The result indicated
a very good potential of the EPAC architecture including compiler techniques to be used such
as unrolling and the potential to improve the micro-architecture in terms of performance of the
gather instructions.

5.5.4 Conclusions

From the experience of the SpMV study at the RISC-V platforms we extract some overall
insights and suggestions. At the ISA and micro-architecture level, we consider that evolving
the current implementation should include:

e Adopt the RVV1.0 standard as a way to improve the support for loops with mixed data
types.

e Rework the gather implementation to increase the effective injection rate of values into
the register bank, in particular for the frequent case of sufficient spatial and temporal
locality in the access pattern.

In terms of platforms, it would be very nice if we could:

e Extend the waveform level acquisition capabilities to other platforms. It is clear that this
is impossible for the internals of chips procured from external vendors. It is very difficult
in platforms not designed and produced by design teams to which our codesign analysts
have access. Nevertheless, in our case, we could include signals at external interfaces
(eg. memory requests). In the particular case of the EPAC1.5 test chip this is certainly
possible.

At the compiler level we recommend to:

e Elaborate alternative code generation schemes for reductions, trying to reduce the number
of additional instructions used in the single generic reduction scheme generated by the
compiler as of today. In particular, the detection of problem vector lengths below the
architectural vector length can be used to avoid a large number of instructions.
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e Elaborate the instruction scheduler algorithms to advance the loads and computations that
produce the indices for gather instructions in order to overlap other possible operations
or loads with the latency of such operations.

e Elaborate the possibility to more aggressively apply loop unrolling to improve the reg-
ister bank utilization and increase the potential overlap among memory operations and
computation.

At the applications and libraries we consider that it would be good:

e To promote the use of other data layouts beyond the CSR. This could be either as native
layout used by the applications or by carrying out temporary data conversion operations
previous to repeated invocations of the basic operations. This situation with invariant
matrix structure and values is typical for the SpMV kernel within iterative solvers and
would amortize the conversion cost over a large number of invocations of the operation.

e Promote the use of numbering algorithms that directly support the implementation of the
previous suggestion as native layout of the application.

e Do not rely on the existence of a vector reduction instruction in the ISA if possible. In
general promote loop interchange approaches such that the innermost dimension is vec-
torizable with long lengths while serializing the reduction operation on such long vectors.

In terms of infrastructure, tools and methodology we suggest:

e To implement other variants of the SpMV algorithm based on the multiple rows approach
but implemented in C++ to check how the compiler generates code for it.

e Use other more realistic matrices, with variable numbers of non-zeros per row and repre-
senting engineering problems.

e Use native compilers from other infrastructures in the holistic evaluation at the different
levels on the FPGA-SDV platform

e Developing a more precise mechanism to synchronize the Extrae and waveform acquisition
mechanism would be extremely useful to perform precise multi-scale analyses in codes with
more phases and variability between them.

5.6 SPMXYV on RHEA

5.6.1 Experimental Conditions

The matrix (resp. vector) size used in our experimentation campaign was around 58 MB (resp.
4 MB): with such sizes, neither matrix nor vector could be entirely stored in the L1 or L2 cache,
however, the vector will fit into the L3 (allowing temporal locality) while the matrix will exceed
the L3 cache sizes for most of our systems under test except SPR and Grace, which had large
enough L3 caches to hold both the whole matrix and vector. With respect to cache behaviour,
every matrix element is accessed with stride 1 (perfect spatial locality) but only used once (no
temporal locality), cache size impact will be limited.
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5.6.2 Timing Tests: Single Core/Multicore

Figure 32 presents the performance numbers obtained on a single core for our various systems
and compilers under test. These results should be considered carefully because first they corre-
spond to unrealistic use of the system and second they introduce a strong bias in the performance
analysis: a single core is using the full system memory hierarchy. However, such tests allow us
to detect differences in compiler b ehaviour and also in t he quality of t he generated ¢ ode. All
in all, both Neoverse V2 (Grace and G4) achieve similar performance for both GCC and ACFL
(Arm Compiler For LINUX), with GCC benefitting from t he - 0Fast o ption. N eoverse V 1 is
slightly behind but faster than Sapphire Rapid. The older systems (Skylake and Neoverse N1)
are lagging behind. On the compiler front, GCC with the -0Ofast option provides systematically
(except on SPR) a performance gain over GCC with -03. On all systems, GCC with -0fast
performance matches the native compilers: ICX on Intel and ACFL on Ampere.
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Figure 32: Performance in GLOPS unicore configuration. Higher is better.

In multicore measurements (see Figure 33), Grace and Sapphire Rapid systems have two
clear advantages: first, t he larger number of cores and second, t heir s calable m emory system,
which has good scalability properties. Sapphire Rapid reveals some interesting multicore char-
acteristics. First, hyperthreading provides a performance boost, hinting that memory latency is
one of the major performance bottlenecks of SMPXV. Second, GCC achieves significantly lower
performance than ICPX while on unicore both compilers achieved similar performance: more
detailed performance analysis indicated that the OpenMP GCC Library (GOMP) was adding a
large overhead. The three older systems (SKL, Ampere and G3) are clearly lagging behind with
respect to performance, mainly due to their lower core counts. Interestingly, there is a major
difference in compiler behavior between GRACE and G 4: on GRACE, GCC performance (both
-03 and -0fast) is lower than ACFL while on G4 all compilers achieve similar performance
(similar situation as the unicore case).
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Figure 33: GFLOPS (histogram) and efficiency (red curve) for SPMXV Multicore runs. Higher
is better.

The efficiency curve shown in Figure 33 confirms the very good SPR scalability : efficiency
is above 90 percent with a remarkable peak at 107 percent with hyperthreading enabled. G4
has better efficiency (60 percent) than Grace (40 percent) essentially due to a smaller number
of cores. Skylake exhibited good scalability with efficiencies of around 60 percent while G3 and
Ampere exhibited poor efficiency (around 30 percent).

Refining t he analysis by normalizing by t he number of cores and frequency (see Figure 34)
sets back GRACE at a lower level than G4, which ends up leading the pack. Finally, the
most interesting part is again Sapphire Rapids, which turns out to be the fastest when using
normalization. Furthermore, parallelism used at the outermost loop level did not introduce
major overhead except for GCC on Sapphire Rapid.

5.6.3 Compiler Analysis

Although the SPMXYV loop seems to be extremely simple, it offers a unique ¢ ombination of
challenges for the compilers. The outermost loop (on 7) is fully parallel and has a very large
iteration count (number of elements in array z). The innermost loop on nz is much more
complex to optimize: first, the loop iteration count is variable and, in general, small (less than
15 in our test case), second the loop corresponds to reduction (scalar dot product), and finally
the access to array z is indirect. The only simple characteristic is access to the matrix values
which has perfect spatial locality (stride 1 access), but all data is exactly used once.
Compilers have a large panel of code generation possibilities which in fact, have been used
by various compilers throughout our systematic testing (see Figure 11). First, compilers could
stay with a scalar loop which could be further optimized by unrolling two or four times. How-
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Figure 34: Multicore run GFLOPs normalized (divided) by number of cores and frequency.
Higher is better

ever, Unrolling use will require then a final reduction step. Second, compilers could vectorize
the loop, requiring the use of scatter/gather instructions (which are costly) then dealing with
peel/tail and finally p erforming the final reduction st age. Third, compilers could perform par-
tial vectorization, only vectorizing loads and/or the FP multiplies. Finally, the peel/tail loop
could be suppressed by using masked instructions available in SVE and AVX 512. For that
simple loop nest, compilers have a large amount of freedom degrees which should be carefully
evaluated and selected by appropriate cost models.

All in all, it is interesting to see that the use of shorter vectors (NEON) and partial vector-
ization finally gave the best performance on both GRACE and G4.

5.6.4 Conclusion and Future Work

MAQAO analysis results for all of the runs made on the various systems (hardware and software
are available at https://datafront.exascale-computing.eu/public/spmxv/.

In the previous subsections, we presented a detailed performance analysis of the SPMXV
kernel on different s ystems ( ARM a nd X 86-64) u sing d ifferent co mpilers (I CPX, AC FL and
GCC) and different compiler o ptions. All of these results have been shared with SiPear] compiler
team which tested their own in-house compiler.

The main takeaway of this analysis is the difficulty of generating efficient code for reduction
patterns in particular for short ones. Choosing the right vector length (not necessarily the
largest one) should be carefully evaluated by compilers in their cost models.
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Neov. V2 Grace Neov. V2 G4 SPR
GCC GCC |ACFL| GCC GCC |ACFL| GCC GCC ICX
03 Ofast 03 03 Ofast 03 03 Ofast 03
Unicore Time(s) 435 364 352 454 383 386 613 593 592
Multicore Time(s) 7,94 7,38 6,09 8,86 8,85 9,17 9,65 9,3 732
Multicore Gigacycles Norm 3544 3294 2719 2382 2379 2465 | 2007 1934 1523
Main Loop Instruction Set SVE SVE NEON SVE SVE NEON AVX AVX512F AVX512F
Main Loop Vectorization Ratio (%) 100 100 33,3 100 100 20 0 100 100
Main Loop Vector Length Use (%) 100 100 333 100 100 60 12,5 46,43 375
Peel/Tail N/A Yes Yes | Yes (NU) Yes Yes N/A N/A Yes
Innermost (% time spent) 95 72 69 95 72 70 97 34 63
Peel/Tail (% time spent) N/A 16 19 0 16 19 N/A N/A 21
In Between (% time spent) 5 10 10 4 10 10 2 65 15
Indirect No FMA ) ) Indirect | TXPensive | Scatter
X Indirect |Indirect Instructions| Gather
Summary Remarks access None None | Indirect access X R
Access | Access 16 paths in| Expensive
access No FMA | . . R
inbetween |instructions

Figure 35: Analysis of code generated by different compilers for SPMXV

Additional work will be carried out to define an efficient code generation strategy for reduc-
tions in function of the reduction size. Second, the cost of the GOMP (GCC Open MP) library
has to be further explored and understood. Third, the parallelization strategy used (using fixed
chunk size) although satisfactory in most of our experiments should be further analyzed by
using different p arallelization s trategies. L ast b ut n ot I east, a full algorithm r ewrite relying
on a major data format change (column storage) should be investigated. This data structure
change will suppress the reduction but will require zero padding. This zero padding will incur
an acceptable cost if the number of non-zero elements deviates too much from the average.
Otherwise, padding will generate too many useless operations.

UVSQ used SPMXYV as a test kernel in an engineering student project: students had to
perform a ”"normalized” (i.e. following strict experimental protocol) performance analysis of
running SPMXYV kernel on their own laptop. The resulting studies (around 40) gave us some
additional insight of SPMXV on a large system panel.

5.7 LBC General performance assessment

The LBC code was mainly tested on the following two reference platforms:

1. A Sapphire Rapid with 2 sockets and 56 cores per socket, using Gfortran 13.3.0 with
-march=native and -Ofast flags

2. A GRACE processor with one socket and 72 cores using Gfortran 11.4 with -mcpu=native
and -Ofast flags

Figure 36 shows LBC behavior with weak scaling on a GRACE system.

Let’s consider a roofline performance estimate using the number of Particle Distribution
Function (PDF) loads/stores and flops encountered in every lattice update. Since ARM Neo-
verse offers a write streaming mode we will assume that a write-allocate does not occur during
the store phase of the loop. This means that for every lattice point update we require 19 PDF
loads, 19 PDF stores, and 18 index loads of the velocity vectors (which show the relative offset
of neighbouring lattice points). Assuming double precision floats (8 bytes) for the PDF's and (4
byte) integers for the indices, the memory traffic required is then 2 x 19 x 8418 x 4 = 376Bytes.
The kernel consists of roughly 240Flops. A simple roofline model prediction based on bandwidth
numbers achieved from benchmarking a STREAM triad kernel then gives us a Performance of
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324GBytes/s x 240Flops/376Bytes = 206.80Gflops/s or 861.70MLUP/s (Million Lattice Up-
dates Per Second). Since this metric considers the number of lattice points updated per second,
it aligns with the computational objective of Lattice Boltzmann Methods and is a better indi-
cator of performance.

Weak scaling; 1 socket on NVIDIA Grace

800
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400 -

Performance [MLUPS/s]

200

Roofline estimate
—8— Measured performance: f = 3.0 GHz
—— Measured performance: f = 2.4 GHz

T T T T
0 10 20 30 40 50 60 70
Core count [#]

Figure 36: LBC Weak scaling performance on Grace system: the domain size and core count
were changed in the inner-most (z) dimension: starting with a problem size of 256x256x64
elements for 1 core, until 256x256x4608 for 72 cores.

For single-core performance, let us consider the MAQAO CPU port model (see Figure 37).
The ARM Neoverse documentation specifies the execution units present on the chip, from which
this port model is constructed. Using assembly code disassembled from the application binary,
the Code Quality Analysis module is able to assign micro-ops and latency cycle values to each
of the execution units. Assuming perfect Out-of-Order execution, the static analysis calculates
a critical path with a length of 121 cycles. The analysis here claims that the integer ALU port
P presents the main bottleneck. At least for a single core, this means that the kernel is not
primarily hindered by data load/stores but address calculation stemming from the streaming
step of the Lattice Boltzmann kernel. Since we now know how many ALU cycles we need for
a single lattice update, inserting the clock frequency of the core should give us a performance
indicator. This would give us estimates of 3.0 GHz / 121 ¢y/LUP = 24.8 MLUP/s and 2.4 GHz
/ 121 cy/LUP = 19.8 MLUP/s for operating frequencies of 3.0 GHz and 2.4 GHz respectively.
The single-core performance measurements [36] showed values of 28.6 MLUP /s and 23.2 MLUPs
which seem to be in the ballpark, and surprisingly a little bit higher.
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PO P1L P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14
uops 4.004.0051.7551.75121.00 51.50 64.75 64.75 64.75 64.75 116.50 116.17 116.33 38.50 38.50
cycles 4.00 4.00 51.75 51.75 121.00 51.50 64.75 64.75 64.75 64.75 116.50 116.17 116.33 38.50 38.50
Execution ports to units layout:

= PO:

« P1:

« P2:ALU

« P3:ALU

« P4 ALU

= P5ALU

» P6 (128 bits): VPU, FP store data, ALU, DIVISQRT
« P7 (128 bits): VPU, ALU, FP store data
= P8 (128 bits): VPU, ALU, DIVISQRT

« PO (128 bits): ALU, VPU

« P10 (256 hits): store address, load

» P11 (256 bits): store address, load

« P12 (256 bits): load

« P13 (64 bits): store data

« P14 (64 bits): store data

Figure 37: Static CPU analysis of the LBC kernel on an NVIDIA GRACE core. The execution
ports are listed, with the number of cycles and micro-ops they are assigned calculated for each
of them.

5.8 LBC on RHEA

5.8.1 Experimental Conditions

In our experiments we used a large grid size 512 x 512 x 768, choosing subdomain size in such
a way that the workload (number of grid points) is equally distributed across the cores. The
grid size is so large that it does not fit in any L3 cache considered.

5.8.2 Compiler Issues

The code structure of the LBC kernel is shown in Listing 1. The overall code structure is
extremely challenging for compilers because, beyond the classical three-loop nest, there are
two additional loops located in the third loop level. These additional loops make the main
computations hard to vectorize because they are no longer in the innermost loop level, which
is the standard target for compiler vectorization. Most compilers concentrate their effort on
vectorizing these loops. Unfortunately, their low iteration count (at most 19) prevents any
significant gain from v ectorization. Worse, the iteration count of 19 also prevents t he compiler
from fully unrolling the loop. Last but not least the first loop (denoted COPY IN) has a variable
loop count.

39



D4.2 - First report on codesign
Version 1.0

000

Listing 1: Kernel structure of the LBC code

DO k=1,1b_domlx(3) !! Domain size along 3rd dimension

DO j=1,1b_domlx(2) /! Domain size along 2nd dimension
DO i=1,1b_domlx (1) !'! Domain size along 1st dimension
DO r=i,19 I'l 19 2terations at most with wvariable iteration start

ftmp (r)=fIn(NDX(r,i-cx(r,1),j-cx(r,2) ,k-cx(r,3))) /! COPY IN

ENDDO
!
! Regular computations
!
DO r=1,19 !'l Exactly 19 iterations
fOut (NDX(r,i,j,k)) = ftmp(r) - omegax(ftmp(r)
ENDDO
ENDDO
ENDDO
ENDDO

- fEq(r))

1!

COPY 0UT

Code compiled with Gfortran with the -03 optimization level on a Graviton 4 clearly shows

the issue of non-vectorization of the main computation (see Figure 38).

Loop id\ Source Location [ Source Function [ Level Exclusive Coverage run_0 (%) Vectorization Ratio (%) Vector Length Use (%)

284 Ibc - Ibm_functions.F90:1759-1888 [...] stream_collide_bgk InBetween
277 Ibc - Ibm_functions.F90:1787-1788 stream_collide_bgk Innermost
280 Ibc - Ibm_functions.F90:1755-1888 [...] stream_collide_bgk InBetween
285 Ibc - Ibm_functions.F90:1796-1796 stream_collide_bgk Innermost

17 Ibc - mpl_set.F90:1602-1605 mpl_exchange Innermost
12 Ibc - mpl_set.F90:1545-1550 mpl_fill_buffer Innermost
154 Ibc - Ib_init.F90:1850-1927 [...] calc_feq Innermost

Figure 38: MAQAO analysis of LBC loops execution time and vectorization running on a 96-
core Graviton, using Gfortran with -O3 as compiler. The hottest loop (44 percent exclusive
coverage) is “in-between” and not vectorized at all. The two “innermost loops” achieve decent

vectorization levels

Now, the more aggressive compiler (Ifort on X86-64) does not perform much better as can

be seen in Figures 39 and 40.
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A Penalty
Loop ID Analysis Score
¥ Loop 590 - Ibc Execution Time: 67 % - WSGiorizationiRationasos - VestorlisngthUSSIGzes
¥ Loop Computation Issues 6
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper
o numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= 4
instructions) costing 4 points each.
. [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting >
or perform unroll and jam. This issue costs 2 points.
¥ Control Flow Issues 51
o [SA] Too many paths (45 paths) - Simplify control structure. There are 45 issues ( = paths) costing 1 point 49
each with a malus of 4 points.
o [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. 2
¥ Data Access Issues 49
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE,
o SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 47 issues (= instructions) 47
costing 1 point each.
. [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on 2
registers. This issue costs 2 points.
¥ Vectorization Roadblocks 51
. [SA] Too many paths (45 paths) - Simplify control structure. There are 45 issues ( = paths) costing 1 point 49
each with a malus of 4 points.
o [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. 2
¥ Inefficient Vectorization 47
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE,
o SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 47 issues (= instructions) 47

costina 1 point each.

Figure 39: MAQAO Analysis of compiler issues for the hottest loop (67 percent execution time)

running on a 52 cores Skylake using IFort with -03. The compiler succeeded in merging the

loops and performing partial vectorization (25,93 % vectorization ratio) but at the cost of a
very complex control flow.

I Loop id| Source Location ‘ Source Function ‘ Level Exclusive Coverage run_0 (%) Vectorization Ratio (%)Vector Length Use (%)
590 Ibc - Ibm_functions.F90:1759-1891 [...] stream_collide_bgk InBetween
595 Ibc - Ibm_functions.F90:1787-1788 stream_c _bgk Innermost|

594 Ibc - Ibm_functions.F90:1787-1788 stream_collide_bgk Innermost;
44 |bc - mpl_set.F90:1545-1546 mpl_exchange

35 lbc - mpl_set.F90:1602-1605 mpl_exchange
678 bc - Ibc.F90:114-114 Ibmain
383 Ibc - Ib_init.F90:1850-1927 [...] calc_feq
5 Ibc - tools.F90:285-297 check_density
681 lbc - Ihc FO0:113-113 Ibmain Innermost!

Figure 40: MAQAO analysis of vectorization ratio for the hottest loops running on a 52 cores
Skylake using IFort -03. The compiler succeeded in merging the loops and performing partial
vectorization (25,93 percent vectorization ratio) but at the cost of a very complex control flow.

5.8.3 Multicore runs

Due to the poor code quality generated by the different c ompilers we h ave t ested so f ar, we
limited our experiments to 4 systems: Skylake, Ampere, Graviton G3 and Graviton G4.

A first analysis was p erformed t o measure t he impact of M PI and load d istribution: in all
of our experiments, parallelism overhead remained under 10 percent showing a limited cost of
MPI communication primitives and a good load distribution.

Figure 41 presents the total execution timing running on full systems. First, compiler choices
and/or options have a very limited impact on execution time. Second, G4 is the overall winner
but essentially due to a larger core count in particular when compared with G3 or Skylake.
Figure 42 which normalizes performance with respect to core count sets back G3, G4 and
Skylake on the same level. Overall, the normalized timings show clearly the low performance

of NEOVERSE N1.
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Time (seconds)
60

50

40

30

20

10

SKL SKL SKL SKL Neov. Neov. Neov. Neov. Neov. Neov. Neov. Neov. Neov. Neov. Neov. Neov.
IFX03 IFX IFORT IFORT N1 N1 N1 N1 V1G3 VIG3 VIG3 VIG3 V2G4 V2G4 V2G4 V2G4
ofast 03 ofast AmpereAmpersAmperesAmpere GNU GNU ACFL ACFL GNU GNU ACFL ACFL
GNU GNU ACFL ACFL 03 ofast 03 ofast 03 ofast 03 ofast

03 ofast 03 ofast

Figure 41: LBC full system (using all available cores) runs on different systems and different
compiler options. Lower is better.

Total time of runs (s) (time ™ nb of cores)
4500

4000
3500
3000
2500
2000
1500
1000

500

SKL SKL SKL SKL Neov. Neov. Neov. Neov. Neov. Neov. Neov. Neov. Neov. Neov. Neov. Neov.
IFX03 IFX IFORT IFORT N1 N1 N1 N1 V1G3 VIG3 VIG3 VI1IG3 V2G4 V2G4 V2G4 V2G4
ofast 03 ofast AmpereAmpereAmpereAmpere GNU GNU ACFL ACFL GNU GNU ACFL ACFL
GNU GNU ACFL ACFL 03 ofast 03 ofast 03 ofast 03 ofast

03 ofast 03 ofast

Figure 42: LBC full system (using all available cores) runs on different systems and different
compiler options: scaled timings i.e. multicore execution times are multiplied by number of
cores used. Lower is better.

5.8.4 Conclusions and Future work

MAQAO analysis for all of the runs made on the various systems (hardware and software) are
available at https://datafront.exascale-computing.eu/public/LBC/.

In the previous subsections, we presented a performance analysis of the LBC kernel on
different s ystems ( ARM a nd X 86-64) u sing d ifferent co mpilers (I FC, AC FL an d GC C) and
different c ompiler o ptions. All o ft hese r esults h ave b een s hared with S iPearl c ompiler team
which tested their own in-house compiler.

The main takeaway of this analysis is the inability of current compilers to deal efficient-
ly /vectorize with complex loop nests.
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Additional work will be carried out to help the compiler by using directives for enabling
loop splitting and/or forcing vectorization. That effort will be pursued by rewriting source code
to facilitate compiler optimizations.
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6 Conclusions and Future work

This document reported the activities and results accomplished in terms of tasks T4.1 and T4.2
during the first t welve months of t he project.

First, the four kernels developed in both tasks are presented, and their main characteristics
are listed. Second, a few lessons taken from the audit effort ared etailed: f our c ase studies
related to patterns and best practices, two notes related to programming models and finally
one summary of our collaboration with other CoE.

Third, our methodology for cooperating with EPI projects (RISC V and Rhea) is detailed.
This covers the experimental methodology developed to generate results and analyze them as
well the various hardware platforms and software tools (simulators, compilers, ..).

Fourth, our kernel evaluation results are presented. The two kernels selected (Sparse Matrix-
Vector multiply and Lattice Boltzmann, computations) selected, turned out to be very chal-
lenging both from a hardware point of view and also compiler point of view. In particular, both
kernels clearly revealed many deficiencies of current compiler t echnology and uniformly across
several major compiler providers (ARM, INTEL and GCC/GFortran). Our findings have been
shared with both RISC V and RHEA teams. In particular, with RHEA, our kernels have been
tested on their in-house compiler. In both cases, our detailed performance analysis led to very
fruitful interactions and will drive further work to improve the performance of these two kernels.

Clearly, there will be some additional carried out on the first t wo kernels s elected: in par-
ticular, LBC will be evaluated/analysed with respect to RISC V

For the coming periods, we already identified t wo kernels ( K-Means ( provided by RWTH)
and FFTW kernels (UVSQ/Sipearl).

With the growing number of published technical pages, especially patterns and best prac-
tices, we identified a need for an advanced listing of the p ages. To fulfil the goal of improving the
navigability of the codesign website, we plan to address the issue by designing and developing
a hierarchical structure of the technical pages. The preliminary idea is to group the pages by
a common affected performance metric, a common programming model or another keyword, or
to have a hierarchy of generalized and specialized pages, e.g., describing a phenomenon under
specific conditions.

On top of the goals defined in the DoA, we brought the idea of creating a knowledge base
of issues (FAQs, caveats, troubleshooting) related to the usage of POP tools and methodology
during assessments and second-level services. Those might be gathered, e.g., during particular
technical meetings, or independently during an analyst work. The reason for such a database
would be to enable a collaborative solving of issues, sharing the solution among the tools users,
and as a codesign input for the tools developers. The selected issues might be published on
the codesign website or through an alternative channel. The whole concept and its technical
aspects will be thoroughly discussed during the following technical meetings.

Table 2 shows the defined KPIs for this activity including our achieved current state as well
as the targets for the next milestone until M24 of the project. As can be seen, we are on track
and even achieved a bit more than planned already.

KPI M12 Goal | M12 Reached | M24 Goal
Kernels created 3 4 6
Technical pages created 7 7 15
Kernels evaluated 2 3 5

Table 2: KPIs for the current MS5 and the next MS11 Codesign milestones.
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From the point of view of the RISC-V EPI codesign, the outcome has been presented to the
LLVM compiler team. Their feedback so far was very positive and our results are very useful
for them in terms of exploring the different approaches included in the study®.

®Conclusions for the compiler team: 1) exploring the scheme for reductions, 2) instruction scheduler, and 3)
loop unrolling.
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Acronyms and Abbreviations

e BSC: Barcelona Supercomputing Center

e CA: Consortium Agreement

e CAdv: Customer Advocate

e DoA: Description of Action (Annex 1 of the Grant Agreement)
e EC: European Commission

e F7J: Forschungszentrum Jilich GmbH

e D: deliverable

e GA: General Assembly / Grant Agreement

e HLRS: High Performance Computing Centre (University of Stuttgart)
e HPC: High Performance Computing

e IPR: Intellectual Property Right

e INESC-ID: Instituto de Ennenharia de Sistemas e Computadores, Investigacao e Desen-
volvimento em Lisboa

e [T4l: Technical University of Ostrava

o KPI: Key Performance Indicator

e M: Month

e MS: Milestones

e PEB: Project Executive Board

e PM: Person month / Project manager

e POP: Performance Optimization and Productivity

e R: Risk

e RV: Review

e RWTH Aachen: Rheinisch-Westfaelische Technische Hochschule Aachen
e TERATEC: TERATEC

e USTUTT (HLRS): University of Stuttgart

e UVSQ: Universite de Versailles Saint-Quentin-en-Yvelines
e WP: Work Package

e WPL: Work Package Leader
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