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Executive Summary
This document reports the activities and results accomplished in terms of tasks T4.1 and T4.2 
during the first twelve months of the project.

First, the four kernels developed in both tasks are presented, and their main characteristics 
are listed.

Second, a few lessons taken from the audit effort a re d etailed: f our case s tudies r elated to 
patterns and best practices, two notes related to programming models and finally one summary 
of our collaboration with other CoE.

Third, our methodology for cooperating with EPI projects (RISC V and Rhea) is presented. 
This covers the experimental methodology developed to generate results and analyze them as 
well as the various hardware platforms and software tools (simulators, compilers, . . . ) used.

Fourth, our kernel evaluation results are presented. The two kernels selected (Sparse Matrix 
Vector multiply and Lattice Boltzmann Computations), turned out to be very challenging both 
from a hardware point of view and also from a compiler point of view. In particular, both 
kernels clearly revealed many deficiencies o f current compiler t echnology and uniformly across 
several major compiler providers (ARM, INTEL and GCC/GFortran). Our findings have been 
shared with both RISC V and RHEA teams. In particular, with RHEA, our kernels have been 
tested on their in-house compiler. In both cases, our detailed performance analysis led to very 
fruitful interactions and will drive further work to improve the performance of these two kernels.

From a deliverable standpoint, Table 1 shows the defined KPIs to b e reached until M12 of 
the project and their current state.

KPI M12 Goal M12 Reached

Kernels created 3 4

Technical pages created 7 7

Kernels evaluated 2 3

Table 1: KPIs for the MS5 Codesign 1 milestone

All the indicators were reached with a slight overachievement.
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1 Introduction

The overall objective of WP4 is to enable codesign with Exascale architectures and applications 
in general, and the EPI in particular, while continuously improving the performance assessment 
methodology and the corresponding tools. The particular objectives of the codesign tasks T4.1 
and T4.2 are:

• To create a set of resources that could be leveraged by application-, programming model-
and system designers to guide its own development.

• To provide valuable guidance for the EPI hardware and software ecosystem based on the
kernels and applications analysed in the project.

Task 4.1 Codesign resources started at M6 and will continue till the end of the project.
Within the consortium, the partners IT4I@VSB, BSC, USTUTT, INESC-ID, and RWTH par-
ticipate in it. The task synthesizes potential HPC application performance problems, develops
corresponding solutions, and makes these available to the HPC community. It includes three
main activities: (1) the development of new kernels that codesigning users may leverage for their
codesign activities, (2) the continuous update of the technical content included in the POP code-
sign website; and (3) POP codesign website extension and maintenance. The main sources for
technical pages (articles on the POP codesign website) and kernels are the HPC applications
we work with in WP3 in form of performance assessments and second-level services.

The activities in this task are not limited to the creation of new content but also include
the enhancement of the existing ones, so the task continuously refactors existing technical page
descriptions where needed, includes new experiments to the already uploaded kernels, especially
those used in the EPI codesign task.

Task 4.2 EPI codesign started at M1 and will be pursued till the end of the project by the
partners UVSQ, BSC, USTUTT, and RWTH.

This task provides input/feedback from the application perspective to the developers of the
hardware/software platform within EPI, the European Processor Initiative, and the two Eu-
ropean Pilots (the EUPILOT and EUPEX). Within EPI, two target architectures have been
selected: RISC V accelerators (project led by BSC) and RHEA (processor developed by Si-
Pearl). Both projects have different development strategies and therefore we used different
methodologies to carry out codesign activities. For the RISCV codesign, applications of inter-
est will be executed on simulators, SDVs (Software Development Vehicles) or early prototypes
to provide direct feedback to the development groups, addressing both the system performance
and the system software. The Sipearl project is using an ARM Neoverse V1 core for which,
implementations are already available (AWS Graviton 3) with a full software stack (compilers,
libraries). For codesign activities on RHEA, we decided to focus our efforts first on the compiler
side and second on testing not only Graviton 3 but also close by ARM cores (Neoverse V2 and
Neoverse N1). To get a full performance picture of the competition, we also systematically
tested recent INTEL X86 processors.

The developed kernels and technical pages are published in their full detail on the codesign
section of the project website1. The shortened descriptions of the achieved results follow in the
next sections. At the moment, the SPMXV and LBC kernels are accessible through these links:

• https://gitlab.pop-coe.eu/kernels/spmxv/

• https://gitlab.pop-coe.eu/kernels/lbc/

1https://co-design.pop-coe.eu
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The document is structured in six major sections. After Section 1 is devoted to the intro-
duction, section 2 presents the main kernels developed both in T4.1 and T4.2. Section 3 will 
describe the effort carried out on Technical Page D evelopment. Section 4  will present codesign 
methodologies used in the 4.2 task. Then Section 5 will review the results obtained through the 
detailed evaluation of the 4.2 kernels. Finally, conclusion and future work will be described in 
section 6.

2 Kernels development
Between Tasks 4.1 an,d 4.2, The rationale for kernel selection is different and complementary. 
In Task 4.2, kernels are code fragments (potentially artificial) w hich w ere s elected b ased on 
well-known performance issues that were repeatedly observed during performance analysis. In 
Task 4.2, instead, we decide to select full algorithms (here Sparse Matrix-Vector Multiply and 
Lattice Boltzmann computation) which have been chosen because they are widely used in various 
scientific c omputations. By t he way, d ue t o t his h eavy u se, s ome o f t he a lgorithms c an have 
some specific implementation in vendor libraries (MKL, ARMPL).

2.1 GPU affinity
This kernel (program) reproduces performance issues due to GPU affinity. It  re peatedly per-
forms a single precision α times x plus y (SAXPY) operation:

Y ← αx + y

It uses OpenMP target offloading to repeatedly perform this operation on the GPU. Further, 
it uses MPI to divide huge vectors into smaller parts and computes them in parallel. Each MPI 
process uses one device to compute its partial result.

2.2 Pils

Pils is a synthetic code which allows to play with multiple MPI processes, each of them with a 
different workload parallelized with OpenMP. The program allows you to configure the workload 
per MPI process, the grain of the OpenMP parallel region, the number of steps to execute, etc.

This program is an isolated version of the Pils test included within the DLB distribution. 
Further information on https://pm.bsc.es/dlb/.

2.3 SPMXV

The SPMXV kernel implements the multiplication y ← Ax of a sparse matrix A and a vector
x. The algorithm for the SpMXV operation is outlined in Figure 1.

The memory bandwidth is the limiting factor in the SpMXV kernel, as by using a sparse
matrix data structure the memory accesses become more random. The sparse matrices used in
this kernel are stored in the CSR (Compressed Sparse Row) format. To compute the resulting
value for matrix row r, the corresponding matrix values have to be loaded. CSR is efficient
in the aspect that for the sparse matrix-vector multiplication, the matrix values are stored
consecutively in memory, i.e., the n values of an arbitrary row r are stored consecutively as
(a(i), . . . , a(i + n − 1)). Hence, reading from the matrix has high spatial locality, but again
every element is read only once. The elements of the right-hand side vector x also have to
be loaded, but here the memory access pattern depends on the matrix structure. For every
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Figure 1: SPMXV kernel

matrix element a(i), the column is stored in a separate vector named col at the same position
i, again resulting in consecutive access to col. However, access to x is random, as the position
i of x(i) is determined by the value of col(i). Consequently, the reuse of the elements in the
vector col from the cache is only successful for blocks/bands in the matrix, resulting in a low
spatial and temporal locality of this part of the operation. Finally, SPMXV is by far the most
time-consuming operation in a GMRES (or similar iterative) method.

The main parameters for the SPMXV kernel are the size of the matrix and the vector as
well as the structure of the used matrix. While the size increases the outer loop, the number of
non-zero elements in a row determines the iteration count of the inner loop. Depending on the
structure of the matrix this may vary and therefore result in a load imbalance.

The kernel can be found here: https://git-ce.rwth-aachen.de/hpc-public/epi-spmxv/

2.4 LBC

The Lattice Boltzmann kernel simulates a 3D vortex shedding around a cylindrical geometry
at a low Reynolds number. The computations are performed using double floating-point pre-
cision. As a particle method, the kernel discretizes space into a 3D structured grid (a lattice),
time according to the CFL condition, and velocity into a number (here, 19) of fixed flow direc-
tions (see Figure 2). This results in each lattice holding a particle distribution function (PDF)
F (velocity, space) that describes the flow a nd a llows o ne t o r ecover variables s uch a s velocity
and momentum using simple integrals over these distribution functions and known weights.
This results in the well-known D3Q19 model, where the grid is traversed, and the new distri-
bution function values are then calculated only depending on old grid values. The three main
components of the kernel are first the streaming part, where the distribution functions from 19
neighboring lattice sites are pulled, second the calculation of macroscopic variables, and third
the collision step, where an operator is executed, calculating the new distribution function and
storing the new grid.

The code is written in Fortran. The distribution function is stored as a 4D array in one of
two forms: F (q, i, j, k) or F (i, j, k, q), where q denotes velocity and the other three coordinates
denote a lexicography numbering of the grid. Since Fortran is column major the first layout
presents more of a ‘structure of array’ type pattern where each lattice point stores the velocity
vectors contiguously, as opposed to the second layout, which includes the spatial coordinates in
the most rapidly changing dimension.

The code is parallelized with MPI, and uses a simple blockwise domain decomposition.
Code and some documentation are available at the Git repo: https://code.hlrs.de/SPMT/
lbc-pop3/.
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Figure 2: LBC Computational pattern

3 Technical pages development

One of the goals of the codesign resources task is to publish the finished r eports ( outputs of
the assessments) to the codesign website. Only the reports that are approved by the owner of
the assessed code through the post-assessment questionnaire can be published. We publish the
reports in batches every 6 months to minimize the overhead - the first set of 3  approved POP3
reports was published in M7 and we expect to publish another set of new reports in M13 after
the recent questionnaires submission.

In addition to the newly published technical pages described below, the back-end functional-
ity of the codesign website was enhanced, too. To understand the relations among the content of
the website, consider the following hierarchy. Each kernel page (named program in the context
of the website) of the programs collection contains links to 2 or more program version pages,
typically 1 page for an original version showing a performance issue (a pattern) and 1 page
for the optimized version implementing the solution of the issue (a best-practice). Originally,
each of the version pages included a link to a separate experiment page containing specific
performance details of the version, e.g., POP performance metrics evaluation, profiles, or trace
visualizations. Both the new technical pages development and some of the topics developed
during the previous phase of the project exposed the need for side-to-side comparison of the
performance data from both versions on the same page. This feature was newly implemented
and already used, e.g., for the Parallel File I/O or the Pils kernels.

3.1 Patterns and best-practices
The following patterns and best-practices are the generalized descriptions of performance issues
and their corresponding solutions related to the kernels 2.1 and 2.2.

3.1.1 Poor GPU data transfer rate

Most CPUs are organized in multiple NUMA domains. Accessing different parts of the memory
from a certain core of such a CPU therefore has different p erformance. We call this affinity.
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Since each available GPU on a system is connected to a NUMA domain this effect also is
observable in data transfers from and to the GPU. Depending on the location of the data on
the host side and the core that is handling the data transfer, both bandwidth and latency can
vary significantly.

If we launch one MPI process per available GPU without specifying where the MPI process
should run, the trace of such an application may look like the trace in Figure 3.

Figure 3: An example of a trace manifesting the poor GPU data transfer rate as a load imbalance 
issue.

We can see that the first process finishes faster even though the computational load is the 
same. This is due to the faster CPU-to-GPU transfers that are available on the MPI process with 
rank 0 as it was executed on the NUMA domain the used GPU is connected to. However, the 
MPI processes with rank 2 and 3 execute on socket 0 while the associated GPUs are connected 
to socket 1. This heavily increases the runtime and results in a load imbalance.

3.1.2 Appropriate process/thread mapping to GPUs

Using the correct CPU cores to handle data transfers to and from the GPU can have a significant 
impact on the performance. Especially with large data transfers the bandwidth differs heavily 
between different NUMA d omains a nd G PUs. This i s d ue t o t he f act t hat o n most systems 
GPUs are connected to a NUMA domain and therefore have a NUMA affinity. Choosing 
appropriate cores to handle the GPU transfers can be achieved on multiple levels and depends 
on the programming paradigm used.

• During the job configuration, job scheduling system (e.g. SLURM, PBS) parameters may
be used to set the correct affinities.

• Environment variables may be used to configure runtimes such to map cores and GPUs
appropriately.

• Wrapper commands can be used to restrict the execution to certain cores (e.g., taskset).

• Directly in the code calls to libraries such as nvpl can be used to obtain the necessary
information. Then the developer can handle the mapping directly in the code (e.g., with
the OpenMP device() clause)

Which of these possibilities to ensure a correct mapping between CPU cores and GPUs
should be used depends on the hardware resources and the runtimes used. Some clusters provide
detailed information about this topic and how to configure jobs on it. If this information is
not given by the provider, it can be obtained with vendor tools such as nvidia-smi or rocm-
smi. These tools can provide information about the hardware topology and help identify GPU
affinity.

When binding the launched MPI processes to the appropriate NUMA domains that corre-
spond to the used GPUs, we can see that the load balance improves, as shown by Figure 4. The
total runtime also improves by 20% in this example and the next iteration starts earlier.

10
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Figure 4: An example of a trace manifesting the improved load balance applying the appropriate 
process mapping to GPUs.

3.1.3 Load imbalance in hybrid programming (MPI+X)

Load imbalance is a longstanding issue in parallel programming and one of the primary con-
tributors to efficiency loss in  high-performance computing (HPC) sy stems. It  occurs when the 
execution time required to complete the workload assigned to different processes varies, meaning 
some processes finish f aster than o thers. While the most heavily l oaded processes continue to 
compute, the less loaded ones are idle, waiting for the next synchronization point, thus wasting 
computational resources and reducing overall efficiency.

In Figure 5 we can see a trace showing the useful duration of two MPI processes with two 
threads each. The first p rocess finalizes it s ex ecution ea rly be fore th e se cond on e and it s two 
threads are idling while the second process still executes its corresponding code.

Figure 5: An example of a trace displaying useful duration executing MPI+OpenMP dlb-pils 
(2 MPI processes x 2 OpenMP threads).

Load imbalance can arise from various factors, and these can generally be categorized into 
three main sources: algorithmic factors, system functionality, and system variability.

• Algorithmic Factors: Load imbalance can be inherent to the algorithm itself, particu-
larly due to uneven data partitioning or varying computational loads. A common example
is uneven data partitioning, where the amount of data assigned to each process differs.
Although mesh partitioning tools like Metis can be used to balance the data distribu-
tion, they often require heuristics to achieve optimal load balancing, which is not always
straightforward. Additionally, even if a partition is well-balanced at the start, it may
become imbalanced later in the execution. Computational imbalance can also arise in
scenarios like sparse matrix calculations, where the distribution of non-zero values across
processes is uneven.

• System Functionality: System-level factors can also introduce load imbalance. For
instance, differences in Instructions Per Cycle (IPC) due to variations in data locality
can lead to unequal workloads among processes. While code optimizations to improve
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data access patterns can mitigate this issue for specific hardware and input sets, such
optimizations may not be effective across different architectures or scenarios.

• System Variability: Hardware and software variability can also significantly contribute
to load imbalance. At the software level, factors like operating system noise or thread
migration between cores can lead to imbalances. At the hardware level, issues such as
network contention or manufacturing variations in components can cause discrepancies in
processing speeds, further exacerbating load imbalance. Since these types of imbalances
are difficult to predict and cannot be addressed through static methods, only dynamic
mechanisms can help reduce or manage their impact on performance.

To address load imbalance, several strategies are commonly used, each targeting different
aspects of the problem. Two major approaches are data-load balancing and computational load
balancing, each with its advantages and limitations.

• Data-Load Balancing: This approach involves redistributing the data among processes
to achieve a more even load distribution. It is one of the most widely used techniques
in current solutions, such as repartitioning the mesh (e.g., PAMPA) or redistributing
data (e.g., Adaptive MPI). However, data movement and mesh partitioning are costly
operations, making this approach more effective for coarse-grain load imbalance, where
large-scale redistribution can be tolerated. While effective, it can be computationally
expensive and may not address finer-grained load imbalances efficiently.

• Computational-Load Balancing: In contrast, computational load balancing focuses
on dynamically allocating more computational resources to processes with higher loads in
order to balance the overall execution time. This strategy is particularly useful for fine-
grained load balancing, as it allows for quicker adjustments compared to data movement.
Since shifting computational resources is generally less costly than moving large data sets,
this approach is better suited for situations where load imbalances are less predictable or
fluctuate frequently

3.1.4 Using DLB to compensate load imbalance

The Dynamic Load Balancing (DLB) library manages resource allocation within a computa-
tional node to address load imbalances in parallel applications. It operates transparently to 
both the developer and the application, adjusting the number of threads assigned to different 
processes as needed. Since this solution is applied at runtime, it can dynamically resolve load 
imbalances that arise during execution.

DLB functions across all layers of the software stack, working in collaboration with each 
to optimize resource utilization. It requires two levels of parallelism: the inner level is used to 
enhance the resource efficiency of  the outer le vel. In  typical HPC applications, this means par-
allelism at both the distributed memory level (e.g., across nodes) and the shared memory level 
(e.g., within a node). A common approach is to combine MPI (Message Passing Interface) for 
distributed memory systems with OpenMP for shared memory systems, allowing the strengths 
of both models to be leveraged.

Load imbalance can be particularly challenging in MPI applications because redistributing 
or moving data between processes is not straightforward. Despite this, MPI remains one of 
the most widely used programming models in HPC. DLB, however, is designed to be easily 
extended to support other parallel programming models. The integration of DLB with MPI 
is transparent to the application and user, leveraging MPI’s PMPI interception mechanism. 
Coordination with OpenMP is based on their standard public API.

12
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DLB supports various load-balancing policies, with one of the most common being LeWI
(Lend When Idle). LeWI operates by ”lending” computational resources (CPUs) from an MPI
process when it is idle, such as when waiting on a blocking call to another MPI process on the
same node. Meanwhile, other processes on the same node that are still computing can ”borrow”
these idle resources.

Under this policy, each CPU is owned by a single process, and ownership does not change
during the lifetime of the process. However, the owner can lend the CPU to other processes.
Importantly, only the owner of a CPU can reclaim it once it has been lent.

To use DLB, developers must include the DLB API in their code. While most DLB oper-
ations are automatically handled by the interception mechanism, certain tasks, such as calling
DLB Borrow(), may require explicit programming. Additionally, developers must link with the
DLB library during the compilation process and preload it before running the application.

Figure 6 shows a trace executing the same program and inputset as in Figure 5 but in this
case DLB mitigates the imbalance problem by lending the unused threads from the first process
to the second one (additional threads in the trace).

Figure 6: An example of a trace displaying useful duration executing MPI+OpenMP dlb-pils 
(2 MPI processes x 2 OpenMP threads) with DLB enabled.

3.2 Programming models

The following programming models were briefly characterized and listed on the website to cover 
the need originating from the new assessments and kernels being currently developed.

3.2.1 HIP

Cross-platform GPU programming without vendor lock-in enables greater cost efficiency and 
makes applications more future-proof against potential hardware changes. Applications devel-
oped relying on the Heterogeneous-computing Interface for Portability (HIP) (https://github. 
com/ROCm/HIP/) are capable of targeting AMD and NVIDIA GPUs through the vendor-specific 
ROCm and CUDA platforms. Its API is designed to closely resemble CUDA, which eases con-
version from existing applications, either manually or relying on the HIPIFY translation tools, 
as well as the development of new applications from scratch by minimizing the learning curve 
for developers. Another feature of using HIP is that applications can be profiled and debugged 
using AMD/NVIDIA tools.

3.2.2 OpenMP offloading

Since OpenMP version 4.0, the standard has introduced support for heterogeneous systems, 
which consist of a host architecture and one or more external accelerator devices. The host 
architecture is where the program begins its execution, while the target accelerators (such as
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GPUs) are external devices attached to the host, capable of executing portions of the compu-
tation. As a key feature, the OpenMP offload mo del en ables pe rformance po rtability across 
different HPC clusters by abstracting the user f rom device-specific architectures.

OpenMP facilitates offloading tasks to  these accelerators us ing the target construct, which 
allows both data and code to be transferred from the host to the target device for execution. 
Additionally, OpenMP provides a set of specialized API routines for managing operations spe-
cific to devices, such as querying device information, handling data management, and managing 
thread hierarchies. The standard also includes environment variables that can be set at runtime 
to configure how the device executes kernels.

The typical workflow f or e xecuting k ernels o n a  d evice i nvolves t hree main s teps: 1 ) The 
host maps its data to the target device’s memory environment; 2) The host offloads OpenMP 
target regions to the device for execution, potentially reusing the data environment to execute 
multiple regions; and 3) The host retrieves the computed results from the device and transfers 
the data back to the host.

3.3 Projects collection
The one of main goals of the POP3 CoE is close collaboration with the other EuroHPC CoEs and 
projects. With the growing number of performance studies coming from campaigns, meaning 
that they target the specific CoE’s codes, there is a  need for assigning the published reports to 
those projects for several reasons. E.g., the same code is developed and assessed under multiple 
projects - the link helps with the identification o f the particular r eport. Some r eaders visiting 
the codesign website might be interested in the subset of reports that belong to a particular 
campaign or CoE. The following projects are currently identified:

• CEEC

• ChEESE 2

• CoEC

• EXCELLERAT P2

• MultiXscale

• SPACE

Figures 7, 8, and 9 illustrate the design and integration of the projects collection into the
codesign website.
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Figure 7: The new Projects collection listing the EU projects with a connection to the published 
assessment reports.

Figure 8: The detail of an EU project item from the new Projects collection listing the related 
code assessment reports.
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Figure 9: The table with the published assessment reports extended by the Project column 
linking the reports with their projects.

4 EPI Methodology

4.1 RISC V
The EPI RISC-V methodology is defined by three d ifferent co mponents: th e ta rget platforms 
(including the performance reference platforms), the tool-chain (all the components in the soft-
ware stack used in the codesign analysis), and the methodology plan (a sequence of studies to 
carry out the analysis).

In terms of the RISC-V platforms, we are using:

• HiFive Unmatched: This scalar core (four cores per socket) running at 1.2 GHz is our
development platform and reference for performance studies. It shares the file system
through NFS with the other platforms.

• Pioneer MILK-V: The nodes of this system are based on the SOPHON SG2042 pro-
cessor and constitute a more recent design with up to 64 cores per socket, supporting the
RVV0.7 ISA at 2.0 GHz with a very short vector length of 128 bits. This makes it a great
comparison platform for a very different design point to our EPI long vector architecture.

• EPAC 1.5@FPGA: This is the EPAC text chip produced in EPI-SGA2. The chip
implements the RVV0.7 ISA with MAXVL of 256 doubles (16K bits). We can run a full
Linux image with access to the shared file system through NFS. We can run it at 333 MHz
or 1 GHz. The memory bandwidth is limited due to an issue in the chip’s PHYs. The
system is fully functional and in a sense experimenting with the two frequencies we can
evaluate the behavior of the core micro-architecture under long memory latencies. Being
the memory latency tolerance one of the key design visions of the EPI (when combined
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with long vector executions), this constitutes a very interesting evaluation point in the
design space.

• FPGA-SDV: This system implements the current RTL of the EPAC core on an FPGA
running at 50 MHz. This emulator runs Linux at sufficient frequency for a reasonable
interactive performance. We can certainly argue that the high memory bandwidth is pro-
vided by real DRAM devices while the processor clock is only 50 MHz. We should be also
aware that the memory controller is run at 50Mhz, thus resulting in a memory subsys-
tem only partially over-dimensioned. Additionally, the environment supports changes in
the memory subsystems such as throttling the memory bandwidth or dilating latency by
adding the desired number of cycles. The platform provides relatively detailed observabil-
ity of micro-architectural signals at different levels, including graduating program counter
and vector instruction at the top of the reorder buffer, L2 cache hits and misses, and data
transfers between scalar and vector core for example. Waveforms for half a million cycles
can be captured.

The different platforms constitute a great infrastructure to evaluate and compare a fairly
wide set of design points and gain insight useful for improving the EPI design. It would certainly
be also interesting to have detailed micro-architectural observability for systems other than the
FPGA-SDV. This is the very first insight deriving from the EPI experience and the study
presented below.

Concerning the tool-chain, we are using:

• LLVM/Clang 12.0.0: The compilation chain developed within the EPI project. At the
same time it is an enabler to generate the binaries we will use in the codesign experiments.

• LLVM/Clang 20.0: The new compilation chain used within the EPI project to specifi-
cally generate RVV 1.0. That tool-chain is used exclusively in the RAVE@QEMU studies
when targeting the new vector specification for RISC-V

• Extrae 4.2.0: The generic BSC Tools instrumentation package is available in all the
platforms and can be used to get Paraver traces at the level of code regions/functions,
including hardware counter information. These traces include a lot of detailed metrics,
which can be analyzed and visualized using Paraver.

• Ila2prv (latest: 2024-11): This tool works on the FPGA-SDV waveforms, translating
them to the Paraver format supporting extremely detailed analyses being applied to them.

• RAVE@QEMU (latest: 2024-11): This QEMU plugin can generate Paraver traces
with instruction sequences (vector and/or scalar) and information such as vector lengths,
registers used or memory address patterns. Even if it does not include actual timing, just
the count, or sequence of instructions is very useful for architectural codesign.

Finally, the methodology plan is currently defined by:

• Elapsed time study, it gives as the result the timing and some aggregated information
derived by the application itself (e.g., computed throughput, bandwidth, etc.). In order to
fairly compare the different platforms, we report if possible the normalized performance
per cycle of the platform.

• Extrae study, it provides a deeper level of detail. It may contain traces, histograms,
and aggregated POP metrics.
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• Architectural study After this initial exploration, the codesign analyst may decide to
continue the analysis following two different paths (not mutually exclusive):

– RAVE@QEMU, it offers details on how the program behaves on a generic RISC-
V architecture. Running on top of RAVE@QEMU the programmer simulates the
vector instructions on top of a RISC-V QEMU virtual machine. The resulting trace
provides insights into the functional behaviour of the compiler-generated code.

– Waveform, ILA traces, it provides the specific behaviour of the RISC-V instruc-
tions on top of the codesign target architecture.

4.2 RHEA

High compiler quality, i.e., the performance of the generated CPU code, is of primary impor-
tance in particular for newcomers on the market such as SiPearl. SiPearl is developing the 
processor RHEA based on an ARM Neoverse V1 core interfacing with a combined High Band-
width Memory (HBM) and traditional DDR5 memory system. As a companion effort, SiPearl 
is also building a software stack environment including a specific c ompiler based on LLVM to 
take full advantage of RHEA architecture.

Our goal is to support SiPearl’s effort in the compiler area, in particular identifying worth-
while optimizations as well as counterproductive ones and correlate them with context. For 
that goal, we develop specific technology to quantitatively and comparatively assess the quality 
of the generated CPU code. The main goals are first t o i dentify weaknesses (mistakes) i n the 
CPU code generation process and second to compare different c ompiler o utputs, T hen a s a 
final s tep, we t ry t o b ackport b etween c ompilers, o ptimizations which h ave b een m issed: for 
example, for the same loop, Compiler A might have failed to vectorize (due to a poor data 
dependence analysis) while compiler B (using a more advanced analysis) might have succeeded. 
The comparative analysis has to be carried out not only between compilers but also between 
options/flags for the same compiler.

For achieving this detailed compiler output analysis, we rely on MAQAO toolset which will 
provide us first with detailed profiling analysis at 3 levels (whole application, function and loop). 
This 3-level analysis is essential because it allows us to detect in comparative studies the main 
location of performance difference b etween c ompiler o ptions o r c ompilers. U nfortunately, it 
does not reveal the main issues: compiler mistakes leading to CPU code with low performance. 
For this latter objective, we used MAQAO detailed binary analysis combining static analysis, 
simplified s imulations a nd m easurements. S uch a n a nalysis d etects c ompiler d eficiencies and 
estimates related performance impact.

In our testing, initial performance testing has been carried out by the kernel author on a 
limited number of systems: such results will be reported in the subsections “Initial Performance 
Assessment”. Then we will perform systematic performance testing on various ARM-based 
platforms (Graviton 3E, Graviton 4, Ampere Altra, Grace) with different c ompilers: GCC/G-
FORTRAN, ACFL (ARM Compiler for Linux based on LLVM). For each compiler, several 
options were also tested but for the sake of simplicity only -O3 and -Ofast will be reported. 
The three instruction sets (NEON, SVE, SVE2) have been systematically tested and evaluated. 
Additionally, two X86-64 systems were used as references using the new OneAPI compilers 
(combining LLVM and INTEL technology) and the old intel classic compilers which have re-
markable vectorization capabilities. All of the system details (number of cores, cache sizes) and 
compilers (names and versions) used are listed in Figures 10 and 11.

All of the kernels (source code) and performance results have been shared with SiPearl. 
SiPearl’s compiler group tested their in-house compiler technology on the kernels and sent us
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back the obtained results. This cooperation effort will be pursued during the whole project.

Figure 10: Hardware configurations tested

Figure 11: Compiler versions tested
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5 Evaluation and analysis
5.1 JUKRR kloop
The Juelich KKR code family (JuKKR) is a collection of codes developed at Forschungszentrum 
Juelich implementing the Korringa-Kohn-Rostoker (KKR) Green’s function method to perform 
density functional theory calculations. Since the KKR method is based on a multiple scattering 
formalism it allows for highly accurate all-electron calculations. For more details see https: 
//co-design.pop-coe.eu/programs/jukkr-kloop/index.htm

Given the availability of the JuKRR code in the POP codesign resources repository, we 
decided to use it as a starting point for the EPI codesign activity in POP3.

5.2 JuKRR on RISC-V

Being an application unknown to the POP3 RVV codesign team, we started trying to run it in 
MareNostrum 5 as a first s tep t o i dentify i ts s tructure a nd b asic c haracteristics. The c ode is 
written in FORTRAN, the build system is based on CMake and uses OpenMP for parallelism 
within a node. We obtained Extrae traces of a first version of the c ode. A  timeline view of the 
code is presented in Figure 12. As can be seen, long parallel regions were not yet parallelized and 
MKL seems to be used intensively in other regions. A second version of the code was also run 
showing a fairly different behaviour (Figure 1 3). In this case, the whole run is far more parallel 
but the analysis of the cache misses revealed the code fitted i n the L2 cache o f Marenostrum, 
which was interpreted as the kernel being an oversimplification of a  more realistic c ode. Taking 
also into account that the FORTRAN compiler development efforts in EPI target the RVV 1.0 
ISA and that the RVV 1.0 FPGA-SDV was not yet available we decided to focus our codesign 
studies effort on t he SPMXV c ode ( see S ection 5 .5), l eaving JuKKR f or l ater analysis on the 
RVV platforms.

Figure 12: Timeline showing the structure (parallel functions) of the OpenMP parallelization 
at Marenostrum 5 for the first version of JuKRR.

Figure 13: Timeline showing the structure (parallel functions) of the OpenMP parallelization 
at Marenostrum 5 for the refactored version of JuKRR.
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5.3 JuKRR on RHEA

The original JuKRR code has a very peculiar behaviour. As mentioned in the original POP2 
JUKRR analysis, it scales up very poorly. Our runs on a Graviton 3E with 64-core showed 
exactly the same behaviour: a 64-core run hardly achieves a speedup of 1,5 over a single-core 
run (see Figure 12). Furthermore, the time spent in OpenMP is regularly increasing when 
increasing the number of cores.

Figure 14: Performance of Original JuKRR: scalability test on a 64 cores Graviton 3E

Figure 15: Performance of Optimized JuKRR: scalability test on a 64-core Graviton 3E

The optimized version developed during the POP2 project moves the parallel region to 
an upper level. This version performs much better (see Figure 15: the speedup on a 64-core 
Graviton 3E is now over 54. With this optimized version, the time spent in OpenMP is now 
negligible. Now, on the other hand, more than 90 percent of the time is spent in ZGEMM 
(dense matrix multiply operation) performed using the ARMPL library. So to some extent, the
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optimized JuKRR kernel ends up being simply a test of Dense Linear Algebra. Furthermore,
the matrix sizes are large enough so the library achieves good performance.
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5.4 SPMXV Initial performance assessment

The Sparse Matrix-Vector (SPMXV) kernel analyzed in this section corresponds to the imple-
mentation presented in Section 2.3. The structure of this code corresponds to a set of nested 
loops traversing the matrix layout, collecting the elements in a single row (expressed in CSR 
format) and computing the result via the reduction of a scalar value.

The SPMXV kernel was tested on two systems:

• A dual-socket Intel Xeon Platinum 8468 (Sapphire Rapids) system (2x48 cores, 2.1 GHz)

• A single socket Nvidia Grace CPU (1x72 cores, 3.0 GHz)

With approximately 5 percent, both systems reached a similar fraction of their theoretical
peak performance (see Figure 17. The theoretical peak performance of the systems was calcu-
lated using their available FMA streams: Ppeak= Cores × 64bit FMA instructions per cycle ×
frequency As figures 16 and 17 show, the achieved maximal performance does not depend upon
the compiler except for the Intel CPU, where the GCC compiler lags behind the Intel compiler
(explanations are given in the detailed analysis).

Figure 16: GFlops performance of SPMXV kernel

Further, the code was evaluated against BLAS like libraries that implement SPMXV on 
the Grace CPU. The tested libraries, ARM PL and Nvidia PL, reached around 3% of the 
peak performance on the Grace CPU with the given matrices. The developed SPMXV kernel 
outperforming the architecture-specific l ibraries indicates the lack of highly optimized SPMXV 
libraries on the ARM Neoverse V2 architecture so far. However, other libraries that implement 
SPMXV have not yet been evaluated.

Finally, the behaviour of the kernel was tested as the size of the problem increased (see 
Figure 18. The similar cache sizes on both machines lead to a similar scaling behaviour, with 
a performance drop at the L3 cache size line. However, with very large matrix sizes where the 
matrix does not fit i nto t he L3 c ache, t he Grace CPU p rovides b etter p erformance compared 
to the Sapphire Rapids.
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Figure 17: Fraction of peak performance for SPMXV kernel

Figure 18: Impact of Datasize on SPMXV performance

5.5 SPMXV on RISC-V

In this section, we present the complete study of the SPMXV kernel for the EPI RISC-V 
architecture. The nature of this kernel allows us to explore different aspects of this code (e.g., 
gathering sparse elements or computing partial reductions) for the RISC-V vector extensions. 
In the following subsections, we will explore the elapsed time behaviour and provide further 
insights using Paraver traces for different RISC-V a rchitectures. The study will also include the 
architectural profile of this kernel execution allowing to reach the assembly level of the ISA.
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5.5.1 SpMV Elapsed time study

Following the described methodology, the first step was to compile and run the source code on 
the different p latforms. To run on the HiFive and Pionner the Makefile had to  be  adapted to 
use the proper compiler and compiler flags as well as l ibraries. The first run of  the same binary 
on the EPAC1.5 failed not finding t he O penMP L ibrary. A fter l oading t he p roper module 
the run was successful. We interpret this experience as another codesign insight in the sense 
that supporting standard environments (e.g., compiler, modules, ...) is a very important design 
target.

Figure 19: Normalized FLOPS per cycle for the different versions of the code (scalar/vector) 
and platform

The normalized performance (FLOPS/cycle) for the different platforms is reported in Figure 
19. The best scalar execution performance is achieved by the Pioneer system. It is followed by 
the FPGA-SDV system, which has around half its performance. The HiFive and EPAC1.5 fall 
clearly behind. In the case of the EPAC1.5 we speculate that the high relative memory latency 
has an important impact towards such low performance.

Regarding vector code, the performance shrinks by half compared to the scalar case for the 
Pioneer, and about one-third in the case of the FPGA-SDV. In the case of the EPAC1.5 at 1 
GHz, the performance is similar to the scalar performance.

The fact that the NNZ (Number of Non-Zero elements) is only 15, far below the design 
target of EPAC would reinforce the interest in vectorization approaches that exploit longer 
vector lengths for this problem.

Although the results are bad for the vector run, we need to understand why and get further 
insight into how the design can be improved beyond moving towards longer vector lengths.

We also studied in terms of elapsed time, the performance when scaling the number of cores 
in the available multicore platforms. The scaling results are shown in Figure 20. The results 
show a change in the slope at 4 cores in the Pioneer platform and again at 16 cores, which 
might be linked to the internal micro-architecture. Anyhow, the increase in performance with 
core count seems to indicate that memory bandwidth saturation, something one typically would 
suspect for an algorithm with low computational intensity, is not a real problem. A single core 
not being able to use a relevant fraction of the memory bandwidth neither for a scalar nor vector 
code is something we consider undesirable and something the EPI architecture should target.

Figure 21 shows the same numbers in terms of absolute performance in FLOPS/cycle where 
we can compare the different p latforms. In the figure, we can observe that the vector code at the 
FPGA-SDV with a single core results in about the same normalized performance as the 4 cores
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Figure 20: Scalar code OpenMP speedup with number of cores for the three multicore platforms

Figure 21: Aggregated FLOPS per cycle when scaling the number of cores in the different 
platforms

SiFive platform. This number should actually be larger, something we will further investigate 
later in this document.

A final experiment we performed measures the impact of increasing memory latency on both 
scalar and vector versions. This experiment can only be done in the FPGA-SDV platform. The 
result is presented in Figure 22. It shows again the better performance of the scalar code under 
the fast memory subsystem, something that will be investigated later. What we nevertheless 
want to highlight at this point is the lower sensitivity of the vector EPAC architecture to memory 
latency, one of the fundamental objectives of the EPI design.

5.5.2 Extrae study

The next level of the evaluation uses Extrae traces to get a deeper insight into the behaviour. 
We instrumented the main phases of the code including reading the matrix, initializing data 
structures and each of the invocations of the SpMV kernel. Besides that, we typically activate
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Figure 22: Impact of additional memory latency on FLOPS per cycle for the scalar and vector 
version of the code in the FPGA-SDV

Figure 23: Timeline (full run and zoom on the execution of 30 SpMVs) for the scalar and vector 
version of the code at the same time scale.

the sampling mechanism every 10 milliseconds so that we can observe behaviour changes along 
the run if they appear. The traces can be obtained for the scalar and vector codes on all 
platforms. In Figure 23 we compare the timelines of phases for the scalar and vector runs at 
EPAC1.5 1GHz, showing a somewhat faster scalar code. Quantitative metrics derived from the 
traces are shown in table 24. We can see the number of instructions executed by the scalar code 
is about 3.3 larger than by the vector code. Considering we expect every element computation 
(matrix row by corresponding vector elements) to be vectorized and the known NNZ we would 
probably have expected a ratio closer to 15. We need to investigate the binary code generated 
for the vector code by the compiler. Also curious is that only 17 percent of vector instructions 
are memory-related, while the source code has very low arithmetic intensity. The scalar IPC is 
about 4.9 better than the vector IPC. Again, to break even we would expect the ratio to be 15. 
The utilization of the vector unit (VPU) reported by the hardware counter is nevertheless very 
high ( 0.93) even with less than 7.4 percent of instructions.

A similar comparison between the scalar runs on EPAC1.5 at 1 GHz and the EPAC FPGA-
SDV at 50 MHz is shown in Figure 25 and table 26. EPAC1.5 is 4.21x faster than the FPGA-
SDV even if the clock is 20x faster. A slightly higher number of instructions in the FPGA-SDV 
platform may indicate the hardware counter mechanism is also counting the scalar instructions 
executed by the sampling software within Extrae. This is a potential codesign input for the 
tools/platform development/maintenance teams, although we do not consider it to be a very 
important perturbation while producing very useful information.
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Figure 24: Metrics for the Scalar SpMV code computed from the traces in the FPGA-SDV and 
EPAC1.5 platforms

Figure 25: Timeline for the vector version of the code on the FPGA-SDV and EPAC1.5 platforms 
at the same time scale.

The IPC is significantly better in the FPGA-SDV case, most probably linked to the fairly 
large memory latency in the EPAC1.5. The impact of this latency could be further studied 
using the memory dilation features of the FPGA-SDV. This is done later in the document with 
the waveform analyses.

We have not really analyzed the cache and TLB MPKIs. That is one of the aspects that we 
should cover in future work for this study.

A final observation clearly apparent in the traces (Figures 23 and 25) is the very slow matrix 
read. This matches the experience in the previous timing runs and suggests the importance of 
implementing reverse offloading capabilities (further elaboration later in the document).

5.5.3 Architectural study

The next level of analysis is to look at waveforms (i.e., how the internal processor signals are 
propagated over time) with cycle-level accuracy for half a million cycles at the FPGA-SDV. 
For every run, we trigger the acquisition 9 times in sequence after the program prints the 
reading of the matrix has finished. With this mechanism, we obtain 9  waveform t races, which 
is enough to capture the behaviour in the SpMV computation. In fact, we obtain in some cases 
also waveforms from the initialization, which were also vectorized and can be used for further 
codesign insight beyond the main computational kernel.

Figure 27 shows the PC along time of the graduating instruction for the scalar code run at 
EPAC-SDV, Even if we have no access to the actual scalar instruction being executed, we can 
identify the loop structure of the code and its correlation to external memory subsystem activity 
like L2 cache hits and misses. The figure shows two loops, with 15 iterations of the innermost for 
each of the outer iterations. This matches the source code structure where the innermost loop 
corresponds to one iteration of the row computation and the outermost iteration corresponds 
to one element (Row by vector). We can really see the impact of cache misses, representing a 
global latency of 75 cycles and stalling the instruction graduation for that time.

The corresponding traces for the vector code are shown in Figure 28. Now we can see 
the instruction at the Top of the Reorder Buffer (ROB) and a  bunch o f o ther metrics f or one 
iteration of the innermost vectorized loop which should correspond to one element (row by 
vector computation). Many important observations are apparent from the figure. We certainly 
see that the vector length of 15 is used in some of the main instructions, particularly loads 
and gathers. Longer vector lengths are nevertheless used for other instructions. This derives
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Figure 26: Metrics for the Scalar SpMV code computed from the traces in the FPGA-SDV and 
EPAC1.5 platforms

Figure 27: Program counter and cache hits/misses timelines of one iteration of the row loop in 
the waveform for the scalar execution at the EPAC-SDV.

from the basic mechanism to implement reductions by the compiler. Being generic in case the 
overall reduction to perform (in our case nnz in a row) is larger than the architecture MAXVL 
(MAXimum Vector Length) it has to allocate a full register where to serialize intermediate 
reductions and perform the final reduction at full vector length.

We also see vector lengths of 256 and 512 elements clearly pointing to mixed use of 64-bit 
and 32-bit values.

In our case, the algorithmic vector length is less than MAXVL and thus operating at a 
longer vector length is a certain overkill. We certainly see that the reduction instruction itself 
takes an important percentage of the execution time.

Additionally, a vwcvtu2 instruction takes a huge percentage of execution time. This instruc-
tion, as well as others (vid, merge, vmsltu, ...), are individually less expensive but still they 
represent a huge aggregated percentage of elapsed time.

With this codesign insight, we are pushing the compiler team to modify the generic code 
generation mechanism to avoid additional instructions and extended vector lengths.

About memory vector instructions we observe that vector loads execute in parallel with 
some of the instructions added by the compiler for the reduction support. This explains the 
reduced memory latency sensitivity observed in figure 2 2. Curiously, some of the data accesses 
by these load instructions are hits while others are misses. This is explained by the vector 
length, where one load instruction requests 15 DP elements while a cache line has 8. Being 
a small vector length and not multiple of the cache line results in those effects. For a  longer 
vector length we would expect larger proportions of the accesses to be misses and these are the 
ones most people would expect to be the memory bandwidth bottleneck for the SpMV code.

The gather instruction (see Figure 28: vlxe) does not overlap with other arithmetic instruc-
tions. Its time at the top of the Re-Order Buffer (ROB) i s larger than the t ime taken by loads 
even if accesses are hits. The limited injection capability3 of the gather implementation is the 
fundamental limitation.

A final observation analyzing the traces is that the code uses 10 out of the 32 architected

2One of the RISC-V widening add instructions.
3Only one element per cycle can be at best injected into the register bank
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Figure 28: Several timelines for one iteration of the innermost loop of the vector execution. From 
top to bottom: instruction at the top of the ROB, vector length, program counter, memory 

operation, L2 misses, L2 hits and data being delivered to the vector unit.

vector registers. This value seems a bit high given the fundamental objects referenced at the 
algorithmic level and is probably originated by the code generation scheme for reductions and 
mixed data types. Even so, this provides useful codesign input for the compiler as it indicates 
that unrolling could be used to increase the utilization of the register state and build larger 
basic blocks that would allow for better instruction schedules and thus improve the overlap 
between arithmetic and memory instructions.

Figure 29: PC waveforms for 0, 100 and 300 additional cycles at the memory controller,
showing how that translates into a stall in the case of cache misses.

To better observe the impact of memory latency, we obtained the corresponding traces for 
the case of 0, 100 and 300 additional latency in the memory subsystem. The results are shown 
in Fig 29 for the scalar case and Figure 30 for the vector case. We observe that the scalar run 
is highly sensitive to the additional latency, paying its full cost on every miss. In the vector 
runs, the additional latency is only paid when it goes beyond the duration of the overlapped 
non-memory instructions.

The above observations and comments have been presented to the compiler team of the EPI 
project. The information proved useful for them and some of the topics have been included in
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Figure 30: Top of the ROB and memory operations execution timelines for 0, 100 and 300 
additional cycles at the memory controller. Only for the 300 cycles case, the additional latency 
translates into an elongation of the vector load instructions when at the top of the reorder 

buffer.

their ongoing compiler extensions road map4; while other suggestions will be taken over for the 
RVV1.0 target, but no backport will be done for the RVV0.7 ISA.

Figure 31: Two iterations of instructions in the innermost vector loop. Timelines from top to 
bottom show the actual vector instruction or indication of a scalar instruction, the last vector 

program counter and the vector length.

To test how much the RVV1.0 eases code generation and how much of the discussed po-
tential improvements are already available in the RVV1.0 compiler we recently performed an 
additional study based on the use of the RAVE 1.0 software emulation platform. Figure 31 
shows a trace of the instructions sequence. It is apparent that the number of vector instructions 
per iteration has drastically been reduced. We now clearly identify the two vector loads, the 
gather, FMA and reduction, plus a vmv1r and a vfmv instruction. Also interesting is that these 
last three instructions execute with a vector length of 256, while the memory and FMA instruc-
tions execute with a vector length of 15. The number of vector registers used is five, leaving

4Resource and scheduling constraints
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opportunities for a large unrolling factor. These observations will now be discussed with the 
compiler team.

Unfortunately, the FPGA-SDV implementing RVV 1.0 is not yet available to actually mea-
sure timing and waveform traces detailing the cost of the individual instructions. We hope this 
to be soon available and will include further analyses in later deliverables.

A final very useful observation in this trace is that the long burst of scalar iterations between 
two vector sequences of instructions is of 17 instructions. This is the look-ahead that the scalar 
core should be able to tolerate in order to issue the vector instructions for the next iteration 
while the previous vector instructions are still in operation. This is very useful codesign insight 
for micro-architecture designers.

One of the observations we have mentioned several times is that the vector length in the 
parallelization approach followed is very low (only 15) which even if fixing s ome o f t he code 
generation issues detected would not efficiently use a microarchitecture designed for significantly 
longer vectors (256). From our point of view, this is codesign insight in the direction of adapting 
the algorithm to expose longer vectors. This can be done with other matrix formats. In a 
previous work, we explored the potential of the shell-c-sigma format supporting longer vector 
lengths. The basic idea of the approach was to operate on a block of rows at a time (typically 
matching the MAXVL of the architecture) and serializing the reduction. It was also written with 
intrinsics, avoiding the additional instructions included by the compiler. The result indicated 
a very good potential of the EPAC architecture including compiler techniques to be used such 
as unrolling and the potential to improve the micro-architecture in terms of performance of the 
gather instructions.

5.5.4 Conclusions

From the experience of the SpMV study at the RISC-V platforms we extract some overall 
insights and suggestions. At the ISA and micro-architecture level, we consider that evolving 
the current implementation should include:

• Adopt the RVV1.0 standard as a way to improve the support for loops with mixed data
types.

• Rework the gather implementation to increase the effective injection rate of values into
the register bank, in particular for the frequent case of sufficient spatial and temporal
locality in the access pattern.

In terms of platforms, it would be very nice if we could:

• Extend the waveform level acquisition capabilities to other platforms. It is clear that this
is impossible for the internals of chips procured from external vendors. It is very difficult
in platforms not designed and produced by design teams to which our codesign analysts
have access. Nevertheless, in our case, we could include signals at external interfaces
(eg. memory requests). In the particular case of the EPAC1.5 test chip this is certainly
possible.

At the compiler level we recommend to:

• Elaborate alternative code generation schemes for reductions, trying to reduce the number
of additional instructions used in the single generic reduction scheme generated by the
compiler as of today. In particular, the detection of problem vector lengths below the
architectural vector length can be used to avoid a large number of instructions.
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• Elaborate the instruction scheduler algorithms to advance the loads and computations that
produce the indices for gather instructions in order to overlap other possible operations
or loads with the latency of such operations.

• Elaborate the possibility to more aggressively apply loop unrolling to improve the reg-
ister bank utilization and increase the potential overlap among memory operations and
computation.

At the applications and libraries we consider that it would be good:

• To promote the use of other data layouts beyond the CSR. This could be either as native
layout used by the applications or by carrying out temporary data conversion operations
previous to repeated invocations of the basic operations. This situation with invariant
matrix structure and values is typical for the SpMV kernel within iterative solvers and
would amortize the conversion cost over a large number of invocations of the operation.

• Promote the use of numbering algorithms that directly support the implementation of the
previous suggestion as native layout of the application.

• Do not rely on the existence of a vector reduction instruction in the ISA if possible. In
general promote loop interchange approaches such that the innermost dimension is vec-
torizable with long lengths while serializing the reduction operation on such long vectors.

In terms of infrastructure, tools and methodology we suggest:

• To implement other variants of the SpMV algorithm based on the multiple rows approach
but implemented in C++ to check how the compiler generates code for it.

• Use other more realistic matrices, with variable numbers of non-zeros per row and repre-
senting engineering problems.

• Use native compilers from other infrastructures in the holistic evaluation at the different
levels on the FPGA-SDV platform

• Developing a more precise mechanism to synchronize the Extrae and waveform acquisition
mechanism would be extremely useful to perform precise multi-scale analyses in codes with
more phases and variability between them.

5.6 SPMXV on RHEA

5.6.1 Experimental Conditions

The matrix (resp. vector) size used in our experimentation campaign was around 58 MB (resp. 
4 MB): with such sizes, neither matrix nor vector could be entirely stored in the L1 or L2 cache, 
however, the vector will fit into the L3 (allowing temporal locality) while the matrix will exceed 
the L3 cache sizes for most of our systems under test except SPR and Grace, which had large 
enough L3 caches to hold both the whole matrix and vector. With respect to cache behaviour, 
every matrix element is accessed with stride 1 (perfect spatial locality) but only used once (no 
temporal locality), cache size impact will be limited.
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5.6.2 Timing Tests: Single Core/Multicore

Figure 32 presents the performance numbers obtained on a single core for our various systems 
and compilers under test. These results should be considered carefully because first they corre-
spond to unrealistic use of the system and second they introduce a strong bias in the performance 
analysis: a single core is using the full system memory hierarchy. However, such tests allow us 
to detect differences i n c ompiler b ehaviour and a lso i n t he quality o f t he g enerated c ode. All 
in all, both Neoverse V2 (Grace and G4) achieve similar performance for both GCC and ACFL 
(Arm Compiler For LINUX), with GCC benefitting f rom t he - OFast o ption. Neoverse V1 is 
slightly behind but faster than Sapphire Rapid. The older systems (Skylake and Neoverse N1) 
are lagging behind. On the compiler front, GCC with the -Ofast option provides systematically 
(except on SPR) a performance gain over GCC with -O3. On all systems, GCC with -Ofast 
performance matches the native compilers: ICX on Intel and ACFL on Ampere.

Figure 32: Performance in GLOPS unicore configuration. Higher is better.

In multicore measurements (see Figure 33), Grace and Sapphire Rapid systems have two 
clear advantages: first, t he l arger number o f c ores and s econd, t heir s calable memory system, 
which has good scalability properties. Sapphire Rapid reveals some interesting multicore char-
acteristics. First, hyperthreading provides a performance boost, hinting that memory latency is 
one of the major performance bottlenecks of SMPXV. Second, GCC achieves significantly lower 
performance than ICPX while on unicore both compilers achieved similar performance: more 
detailed performance analysis indicated that the OpenMP GCC Library (GOMP) was adding a 
large overhead. The three older systems (SKL, Ampere and G3) are clearly lagging behind with 
respect to performance, mainly due to their lower core counts. Interestingly, there is a major 
difference in compiler behavior between GRACE and G4: on GRACE, GCC performance (both 
-O3 and -Ofast) is lower than ACFL while on G4 all compilers achieve similar performance 
(similar situation as the unicore case).
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Figure 33: GFLOPS (histogram) and efficiency (red curve) for SPMXV Multicore runs. Higher 
is better.

The efficiency curve shown in Figure 33 confirms the very good SPR scalability : efficiency 
is above 90 percent with a remarkable peak at 107 percent with hyperthreading enabled. G4 
has better efficiency (60 percent) than Grace (40 percent) essentially due to  a smaller number 
of cores. Skylake exhibited good scalability with efficiencies of  around 60  percent while G3  and 
Ampere exhibited poor efficiency (around 30  percent).

Refining the analysis by normalizing by the number of cores and f requency (see Figure 34) 
sets back GRACE at a lower level than G4, which ends up leading the pack. Finally, the 
most interesting part is again Sapphire Rapids, which turns out to be the fastest when using 
normalization. Furthermore, parallelism used at the outermost loop level did not introduce 
major overhead except for GCC on Sapphire Rapid.

5.6.3 Compiler Analysis

Although the SPMXV loop seems to be extremely simple, it offers a  u nique c ombination of 
challenges for the compilers. The outermost loop (on i) is fully parallel and has a very large 
iteration count (number of elements in array x). The innermost loop on nz is much more 
complex to optimize: first, the loop i teration count i s variable and, in general, small ( less than 
15 in our test case), second the loop corresponds to reduction (scalar dot product), and finally 
the access to array x is indirect. The only simple characteristic is access to the matrix values 
which has perfect spatial locality (stride 1 access), but all data is exactly used once.

Compilers have a large panel of code generation possibilities which in fact, have been used 
by various compilers throughout our systematic testing (see Figure 11). First, compilers could 
stay with a scalar loop which could be further optimized by unrolling two or four times. How-
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Figure 34: Multicore run GFLOPs normalized (divided) by number of cores and frequency. 
Higher is better

ever, Unrolling use will require then a final reduction step. Second, compilers could vectorize 
the loop, requiring the use of scatter/gather instructions (which are costly) then dealing with 
peel/tail and finally performing the final reduction st age. Third, compilers could perform par-
tial vectorization, only vectorizing loads and/or the FP multiplies. Finally, the peel/tail loop 
could be suppressed by using masked instructions available in SVE and AVX 512. For that 
simple loop nest, compilers have a large amount of freedom degrees which should be carefully 
evaluated and selected by appropriate cost models.

All in all, it is interesting to see that the use of shorter vectors (NEON) and partial vector-
ization finally gave the best performance on both GRACE and G4.

5.6.4 Conclusion and Future Work

MAQAO analysis results for all of the runs made on the various systems (hardware and software 
are available at https://datafront.exascale-computing.eu/public/spmxv/.

In the previous subsections, we presented a detailed performance analysis of the SPMXV 
kernel on different s ystems ( ARM a nd X 86-64) u sing d ifferent co mpilers (I CPX, AC FL and 
GCC) and different compiler o ptions. All of these results have been shared with SiPearl compiler 
team which tested their own in-house compiler.

The main takeaway of this analysis is the difficulty of  generating efficient code  for reduction 
patterns in particular for short ones. Choosing the right vector length (not necessarily the 
largest one) should be carefully evaluated by compilers in their cost models.
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Figure 35: Analysis of code generated by different compilers for SPMXV

Additional work will be carried out to define an efficient code generation strategy for  reduc-
tions in function of the reduction size. Second, the cost of the GOMP (GCC Open MP) library 
has to be further explored and understood. Third, the parallelization strategy used (using fixed 
chunk size) although satisfactory in most of our experiments should be further analyzed by 
using different p arallelization s trategies. L ast b ut n ot l east, a  f ull a lgorithm r ewrite relying 
on a major data format change (column storage) should be investigated. This data structure 
change will suppress the reduction but will require zero padding. This zero padding will incur 
an acceptable cost if the number of non-zero elements deviates too much from the average. 
Otherwise, padding will generate too many useless operations.

UVSQ used SPMXV as a test kernel in an engineering student project: students had to 
perform a ”normalized” (i.e. following strict experimental protocol) performance analysis of 
running SPMXV kernel on their own laptop. The resulting studies (around 40) gave us some 
additional insight of SPMXV on a large system panel.

5.7 LBC General performance assessment

The LBC code was mainly tested on the following two reference platforms:

1. A Sapphire Rapid with 2 sockets and 56 cores per socket, using Gfortran 13.3.0 with
-march=native and -Ofast flags

2. A GRACE processor with one socket and 72 cores using Gfortran 11.4 with -mcpu=native
and -Ofast flags

Figure 36 shows LBC behavior with weak scaling on a GRACE system.

Let’s consider a roofline performance estimate using the number of Particle Distribution
Function (PDF) loads/stores and flops encountered in every lattice update. Since ARM Neo-
verse offers a write streaming mode we will assume that a write-allocate does not occur during
the store phase of the loop. This means that for every lattice point update we require 19 PDF
loads, 19 PDF stores, and 18 index loads of the velocity vectors (which show the relative offset
of neighbouring lattice points). Assuming double precision floats (8 bytes) for the PDFs and (4
byte) integers for the indices, the memory traffic required is then 2×19×8+18×4 = 376Bytes.
The kernel consists of roughly 240Flops. A simple roofline model prediction based on bandwidth
numbers achieved from benchmarking a STREAM triad kernel then gives us a Performance of
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324GBytes/s × 240Flops/376Bytes = 206.80Gflops/s or 861.70MLUP/s (Million Lattice Up-
dates Per Second). Since this metric considers the number of lattice points updated per second,
it aligns with the computational objective of Lattice Boltzmann Methods and is a better indi-
cator of performance.

Figure 36: LBC Weak scaling performance on Grace system: the domain size and core count 
were changed in the inner-most (z) dimension: starting with a problem size of 256x256x64 

elements for 1 core, until 256x256x4608 for 72 cores.

For single-core performance, let us consider the MAQAO CPU port model (see Figure 37). 
The ARM Neoverse documentation specifies the execution units present on the chip, from which 
this port model is constructed. Using assembly code disassembled from the application binary, 
the Code Quality Analysis module is able to assign micro-ops and latency cycle values to each 
of the execution units. Assuming perfect Out-of-Order execution, the static analysis calculates 
a critical path with a length of 121 cycles. The analysis here claims that the integer ALU port 
P4 presents the main bottleneck. At least for a single core, this means that the kernel is not 
primarily hindered by data load/stores but address calculation stemming from the streaming 
step of the Lattice Boltzmann kernel. Since we now know how many ALU cycles we need for 
a single lattice update, inserting the clock frequency of the core should give us a performance 
indicator. This would give us estimates of 3.0 GHz / 121 cy/LUP = 24.8 MLUP/s and 2.4 GHz 
/ 121 cy/LUP = 19.8 MLUP/s for operating frequencies of 3.0 GHz and 2.4 GHz respectively. 
The single-core performance measurements [36] showed values of 28.6 MLUP/s and 23.2 MLUPs 
which seem to be in the ballpark, and surprisingly a little bit higher.
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Figure 37: Static CPU analysis of the LBC kernel on an NVIDIA GRACE core. The execution 
ports are listed, with the number of cycles and micro-ops they are assigned calculated for each 

of them.

5.8 LBC on RHEA

5.8.1 Experimental Conditions

In our experiments we used a large grid size 512 x 512 x 768, choosing subdomain size in such 
a way that the workload (number of grid points) is equally distributed across the cores. The 
grid size is so large that it does not fit in any L3 cache considered.

5.8.2 Compiler Issues

The code structure of the LBC kernel is shown in Listing 1. The overall code structure is 
extremely challenging for compilers because, beyond the classical three-loop nest, there are 
two additional loops located in the third loop level. These additional loops make the main 
computations hard to vectorize because they are no longer in the innermost loop level, which 
is the standard target for compiler vectorization. Most compilers concentrate their effort on 
vectorizing these loops. Unfortunately, their low iteration count (at most 19) prevents any 
significant gain f rom v ectorization. Worse, the i teration count of 19 also prevents the compiler 
from fully unrolling the loop. Last but not least the first loop (denoted COPY IN) has a variable 
loop count.
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Listing 1: Kernel structure of the LBC code

DO k=1,lb_domlx (3) !! Domain size along 3rd dimension

DO j=1,lb_domlx (2) !! Domain size along 2nd dimension

DO i=1,lb_domlx (1) !! Domain size along 1st dimension

DO r=i,19 !! 19 iterations at most with variable iteration start

ftmp(r)=fIn(NDX(r,i-cx(r,1),j-cx(r,2),k-cx(r ,3))) !! COPY IN

ENDDO

! ...

! Regular computations

! ...

DO r=1,19 !! Exactly 19 iterations

fOut(NDX(r,i,j,k)) = ftmp(r) - omega*(ftmp(r) - fEq(r)) !! COPY OUT

ENDDO

ENDDO

ENDDO

ENDDO

Code compiled with Gfortran with the -O3 optimization level on a Graviton 4 clearly shows
the issue of non-vectorization of the main computation (see Figure 38).

Figure 38: MAQAO analysis of LBC loops execution time and vectorization running on a 96-
core Graviton, using Gfortran with -O3 as compiler. The hottest loop (44 percent exclusive 
coverage) is “in-between” and not vectorized at all. The two “innermost loops” achieve decent 

vectorization levels

Now, the more aggressive compiler (Ifort on X86-64) does not perform much better as can
be seen in Figures 39 and 40.
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Figure 39: MAQAO Analysis of compiler issues for the hottest loop (67 percent execution time) 
running on a 52 cores Skylake using IFort with -O3. The compiler succeeded in merging the 
loops and performing partial vectorization (25,93 % vectorization ratio) but at the cost of a 

very complex control flow.

Figure 40: MAQAO analysis of vectorization ratio for the hottest loops running on a 52 cores 
Skylake using IFort -O3. The compiler succeeded in merging the loops and performing partial 
vectorization (25,93 percent vectorization ratio) but at the cost of a very complex control flow.

5.8.3 Multicore runs

Due to the poor code quality generated by the different c ompilers we h ave t ested s o f ar, we 
limited our experiments to 4 systems: Skylake, Ampere, Graviton G3 and Graviton G4.

A first analysis was p erformed to measure the impact o f MPI and l oad d istribution: i n all 
of our experiments, parallelism overhead remained under 10 percent showing a limited cost of 
MPI communication primitives and a good load distribution.

Figure 41 presents the total execution timing running on full systems. First, compiler choices 
and/or options have a very limited impact on execution time. Second, G4 is the overall winner 
but essentially due to a larger core count in particular when compared with G3 or Skylake. 
Figure 42 which normalizes performance with respect to core count sets back G3, G4 and 
Skylake on the same level. Overall, the normalized timings show clearly the low performance 
of NEOVERSE N1.
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Figure 41: LBC full system (using all available cores) runs on different systems and different
compiler options. Lower is better.

Figure 42: LBC full system (using all available cores) runs on different systems and different
compiler options: scaled timings i.e. multicore execution times are multiplied by number of

cores used. Lower is better.

5.8.4 Conclusions and Future work

MAQAO analysis for all of the runs made on the various systems (hardware and software) are
available at https://datafront.exascale-computing.eu/public/LBC/.

In the previous subsections, we presented a performance analysis of the LBC kernel on
different s ystems ( ARM a nd X 86-64) u sing d ifferent co mpilers (I FC, AC FL an d GC C) and
different c ompiler o ptions. A ll o f t hese r esults h ave b een s hared w ith S iPearl c ompiler team
which tested their own in-house compiler.

The main takeaway of this analysis is the inability of current compilers to deal efficient-
ly/vectorize with complex loop nests.

42

https://datafront.exascale-computing.eu/public/LBC/


D4.2 - First report on codesign 
Version 1.0

Additional work will be carried out to help the compiler by using directives for enabling
loop splitting and/or forcing vectorization. That effort will be pursued by rewriting source code
to facilitate compiler optimizations.
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6 Conclusions and Future work
This document reported the activities and results accomplished in terms of tasks T4.1 and T4.2 
during the first twelve months of the project.

First, the four kernels developed in both tasks are presented, and their main characteristics 
are listed. Second, a few lessons taken from the audit effort a re d etailed: f our c ase studies 
related to patterns and best practices, two notes related to programming models and finally 
one summary of our collaboration with other CoE.

Third, our methodology for cooperating with EPI projects (RISC V and Rhea) is detailed. 
This covers the experimental methodology developed to generate results and analyze them as 
well the various hardware platforms and software tools (simulators, compilers, ..).

Fourth, our kernel evaluation results are presented. The two kernels selected (Sparse Matrix-
Vector multiply and Lattice Boltzmann, computations) selected, turned out to be very chal-
lenging both from a hardware point of view and also compiler point of view. In particular, both 
kernels clearly revealed many deficiencies o f current compiler t echnology and uniformly across 
several major compiler providers (ARM, INTEL and GCC/GFortran). Our findings have been 
shared with both RISC V and RHEA teams. In particular, with RHEA, our kernels have been 
tested on their in-house compiler. In both cases, our detailed performance analysis led to very 
fruitful interactions and will drive further work to improve the performance of these two kernels.

Clearly, there will be some additional carried out on the first two kernels s elected: i n par-
ticular, LBC will be evaluated/analysed with respect to RISC V

For the coming periods, we already identified two kernels (K-Means (provided by RWTH) 
and FFTW kernels (UVSQ/Sipearl).

With the growing number of published technical pages, especially patterns and best prac-
tices, we identified a need for an advanced listing of the p ages. To fulfil the goal of improving the 
navigability of the codesign website, we plan to address the issue by designing and developing 
a hierarchical structure of the technical pages. The preliminary idea is to group the pages by 
a common affected performance metric, a  common programming model or another keyword, or 
to have a hierarchy of generalized and specialized pages, e.g., describing a phenomenon under 
specific conditions.

On top of the goals defined i n the DoA, we brought the i dea o f c reating a  knowledge base 
of issues (FAQs, caveats, troubleshooting) related to the usage of POP tools and methodology 
during assessments and second-level services. Those might be gathered, e.g., during particular 
technical meetings, or independently during an analyst work. The reason for such a database 
would be to enable a collaborative solving of issues, sharing the solution among the tools users, 
and as a codesign input for the tools developers. The selected issues might be published on 
the codesign website or through an alternative channel. The whole concept and its technical 
aspects will be thoroughly discussed during the following technical meetings.

Table 2 shows the defined KPIs for this activity including our achieved current state as well 
as the targets for the next milestone until M24 of the project. As can be seen, we are on track 
and even achieved a bit more than planned already.

KPI M12 Goal M12 Reached M24 Goal

Kernels created 3 4 6

Technical pages created 7 7 15

Kernels evaluated 2 3 5

Table 2: KPIs for the current MS5 and the next MS11 Codesign milestones. 
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From the point of view of the RISC-V EPI codesign, the outcome has been presented to the
LLVM compiler team. Their feedback so far was very positive and our results are very useful
for them in terms of exploring the different approaches included in the study5.

5Conclusions for the compiler team: 1) exploring the scheme for reductions, 2) instruction scheduler, and 3)
loop unrolling.
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