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Executive Summary 
This deliverable includes a summary of the work carried out by Task 3.1 
Assessments during the months 12 to 18 of the project. 

1. Introduction 
In this document, we report the data gathered and generated from the 
performance assessments requests1 received by the project. The assessments 
handled by the project go through several states. When a request for 
(assessment) service is received, its status is Received, once it has been 
accepted and assigned to one of the partners, we consider it Open. An open 
assessment can be Blocked for technical, legal, or other reasons. When an 
assessment is closed successfully after presenting the results to the customer, 
we consider it Completed. An Open or Blocked assessment can be cancelled if 
unsolvable issues are detected. Further process details including our data 
collection methodology have been presented in Deliverable D3.2. 
 
The document is divided into three main parts. The first one (Chapter 2) 
characterizes up to 60 requests and codes received, which means it considers 
all the requests of assessments Received, Completed, and Open, where data 
was available at the end of May 2025. The data used in this part of the report 
comes from the information provided by the customer in the two initial forms2, 
partially annotated or extended by the POP3 performance analysts while 
carrying out the assessment. This data includes the parallel programming 
models supported, the HPC cluster requested for the assessment, or the source 
of the request, among others. This information is relevant to the Tools (T4.3) 
and Methodology (T4.4) tasks as it guides the main efforts in the development 
of new features of the tools, which use case the methodology should consider, 
or which architectures must be supported. 
 
The second part (Chapter 3) of this document analyses the performance data 
gathered from 10 Completed assessments since M12. This section of the 
document is based on the information provided by the analysts in the final 
assessment form and the final report. 
 
Finally, the third part (Chapter 4) of this deliverable briefly summarizes the Open 
assessments. 

 

 
1 https://www.pop-coe.eu/services 
2 https://pop-coe.eu/request-service-form 
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2. Assessments characterization 
In this section, we analyse the characteristics of the requests received by Task 
3.1 Assessments. The data presented here was assessed by the end of May 
2025. 

2.1 Origin of assessments 
One of the main focuses of POP3 is to analyse the codes of the coexisting 
EuroHPC Centres of Excellence (CoEs). Currently, we have received service 
requests from 8 different CoEs: CEEC, ChEESE2, EoCoE3, ESiWACE, 
EXCELLERAT, MultiXscale, Plasma-PEPSC and SPACE. 

 

 
Figure 1: Distribution of source of performance assessments by CoE 

 

Figure 1 shows the distribution of requests received by the different CoEs and 
from other customers (category: No CoE). 

2.2 Cluster used for assessment 
When a request for a performance assessment is received, the customer 
decides in which cluster the code should be assessed. Figure 2 shows the 
distribution of the clusters used for the performance assessments. We can 
observe a high heterogeneity in the cluster requested for the analysis, which 
must be reflected in WP4 (Tools) to focus on supporting a large variety of 
hardware. The list of clusters includes the European pre-exascale 
supercomputers. 
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With 14 assessments, Leonardo is the most popular cluster, which was the 
preferred system, especially in the ChEESE2 campaign. Further, LUMI and 
MN5 are very popular with 11 assessments. Just considering these three 
systems, it can be noted that they exhibit different architecture in terms of CPU 
(Intel vs. AMD) and GPU (NVIDIA vs. AMD). In particular, the differences in 
these two HPC accelerator technologies and lower maturity of the AMD 
software stack underlines the technical challenges solved in the respective 
assessments. 

 

 
Figure 2: Distribution of clusters used for performance assessments 

 

2.3 Programming models 
In this subsection, we analyse the (parallel) programming models used in the 
codes assessed. Regarding parallelism, we analyse three different levels: the 
distributed programming model (MPI), shared memory programming model 
(threading), and the use of accelerators (GPUs). 
 
First, Figure 3 shows the use of programming languages in the assessments. 
C++ and the mixture of C and C++ clearly dominate. Fortran has a fraction of 
38%. A small portion of codes use Python in combination with C++. 
 
Figure 4 shows the use of MPI: 94% of the codes analysed use MPI for 
distributed memory parallelism. The rest is shared memory and/or GPU only. 
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Figure 3: Use of programming languages 

 

 
Figure 4: Use of MPI / distributed memory parallelism 

 
Figure 5 shows the distribution of programming models used at the threading 
level for shared memory parallelism, which is relevant for 37% of the codes. 
Out of these, OpenMP continues to be the most prominent model. But as we 
also encountered other combinations of threading programming models, which 
again poses a challenge for the tools and methodology tasks, as analysts must 
be able to support all of them and - in particular - their combination. 
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Figure 5: Use of threading models for shared memory parallelism 

 
With 36% significantly less than half of the codes did not use GPUs at all. The 
most-used GPU programming models are CUDA and OpenACC, as shown in 
Figure 6. 

 

 
Figure 6: Use of GPU programming models 

 
In this case, the feedback for the Tools task in WP4 is to prioritize support for 
CUDA and OpenACC. While, if possible, provide support for OpenMP and 
SYCL. 
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3. Completed assessments summary 
In this section, we analyse the data gathered from the Completed assessments 
since M12. The data presented here was assessed by mid of June 2025. 

3.1 Scaling of codes assessed 
Figure 7 shows the maximum number of CPU cores used in the Completed 
assessments and the number of assessments using a certain number of 
resources. We see a broad distribution in the number of cores used. The 
highest values being 12 288 cores. 
 

 
Figure 7: Maximum number of cores used per assessment 

 

The total number of GPUs used in assessments ranges from 16 to 512 as 
shown in Figure 8. 
 

 
Figure 8: Maximum number of GPUs used per assessment 

 

3.2 Analysis of Efficiencies measured 
In this section, we briefly analyse the performance gathered from the 
performance assessments that have been Completed. The extended number 
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of metrics gathered as part of the POP methodology has been described in 
D3.2. 
 
To avoid having data that is too sparse, we have continued to compute statistics 
only for some high-level metrics. We have categorized the efficiencies as 
follows: 

• Super: Higher than 100% 
• Very good: Between 100% and 90% 
• Good: Between 90% and 80% 
• Fair: Between 80% and 70% 
• Poor: Between 70% and 60% 
• Bad: Lower than 60% 

 
In Figure 9, we plot for each metric how many assessments received each kind 
of categorization. 

 

 
Figure 9. Categorization of the efficiencies measured for the Completed performance 

assessments 
 

The distribution did not change significantly from the previous six months that 
were reported in D3.2 in that we observe a high variation. This underlines, first, 
the value of the POP metrics in providing a holistic performance characteristic 
supporting a wide range of applications, and second, the need for continued 
performance assessments of codes running on modern (large-scale) HPC 
systems. 
 
The following subsections detail the assessments that were completed during 
the reporting period. 
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3.3 POP3_AR_016 
The analyzed application is a mini-application extracted from an IFS model. 
It performs a global spherical harmonics transformation. The performance 
assessment identified a major issue: poor orchestration efficiencies related 
to MPI communication and CUDA management. A key finding is that most 
of the runtime is spent on frequent MPI communication and CPU↔GPU 
data transfers, while useful computation forms only a small part of the 
overall execution time. 
 
The initialization phase accounts for 52% of the total runtime, with 
processes 0 and 15 spending significant time in MPI_Allgatherv, primarily 
involving CPUs. The initial step of the iterative computation takes 22% of the 
runtime, characterized by GPU↔CPU data transfers, CUDA data loadings, and 
device memory allocations, leading to imbalances and longer MPI_Barriers 
for certain ranks. The Region of Interest (RoI), where GPUs are mainly used, 
only sees GPUs actively computing for approximately 2 seconds, which 
is just 17% of the RoI's runtime; the rest of the time is spent idling, in data 
transfers, and synchronization routines. Further, the application suffers from 
frequent waiting in blocking collective communication, barriers, and wait-
all calls, with 54% of the time spent on data transfers (CPU-GPU and MPI) 
on average. The MPI synchronization part, particularly barriers, 
significantly expands with more resources, growing from 9% to 29% of the 
total runtime. While strong scaling is good for 4 and 8 compute nodes, it begins 
to stagnate at 16 nodes and does not scale well at 32 nodes. Furthermore, there 
is an increasing load imbalance with more resources. 
 
To improve the scalability of the application, several recommendations were 
made. It is suggested to review the current communication pattern, 
assessing whether all communication and data transfers are necessary and if 
the volume of data sent in every step is genuinely required. There's also a 
recommendation to explore overlapping communication with computation. 
Furthermore, focus should be placed on achieving a more balanced 
workload distribution across GPUs. Finally, it is advised to reappraise the 
necessity of short kernels and their regular synchronization with the host 
to mitigate overheads from stream synchronization and kernel launches. 

3.4 POP3_AR_017 
The application provides a numerical solution for equations governing fluid flow 
in three dimensions, specifically used to simulate the impact of airplane wing 
shape on airflow. The key finding of the analysis was that scaling is good up 
to 128 GPUs, but beyond this point, communication begins to present a 
significant problem for the specific input problem size and parametrization 
tackled. The code uses OpenACC as the GPU programming model. 
 
It was profiled scaling from 16 MPI ranks and 16 GPUs up to 512 MPI ranks 
and 512 GPUs. While using more GPUs generally resulted in faster execution 
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of time-steps and reduced time between MPI calls, Parallel Efficiency was 
observed to be ≥ 90% only up to 64 GPUs. Beyond this, Communication 
Efficiency, primarily due to Transfer Efficiency, significantly decreased, 
especially with 128 or more GPUs. Furthermore, analysis revealed that host-
device transfers account for a significant portion of execution time and 
do not overlap with GPU kernels. Nvidia Nsight Compute analysis 
highlighted issues like uncoalesced global and shared memory accesses, 
and occupancy bottlenecks in several computationally intensive kernels. 
 
To improve the scalability, several recommendations were identified. Firstly, 
addressing the communication pattern that causes contention in inter-node 
input links, potentially by reordering inter-process communication, could 
reduce communication costs and improve efficiency. Secondly, the low parallel 
efficiency during communication phases on large runs could be improved 
by advancing or delaying computations to better overlap communication 
and computation. Specifically, introducing overlap for host-device transfers, 
or even reducing their size and frequency by minimizing dependencies 
and retaining data on GPUs for longer periods, could substantially enhance 
performance. Lastly, significant improvements could be achieved by 
optimizing GPU kernels to mitigate global memory coalescing issues (with 
potential gains of 41-66%), addressing uncoalesced shared memory 
accesses (35-39% gain), and improving occupancy (up to 40% speedup 
potential on some kernels). 

3.5 POP3_AR_018 
This is a Computational Fluid Dynamics (CFD) code, primarily written in 
Fortran and utilizing MPI for parallelization. The simulation was executed with 
5, 10, 20, 40, and 80 nodes. The key finding of the analysis was that the 
primary issue impacting performance was Serialization, largely due to the 
coupling process where one physics waits while the other is running. 
Additionally, common issues across the solvers included load imbalance 
caused by long computational bursts with low Instructions Per Cycle 
(IPC) due to cache misses, and system noise affecting serialization. 
 
Regarding its performance characteristics, the application's total execution 
time began to separate from the ideal time at 40 nodes when analyzing 
strong scalability over 1000 time steps. Across the individual solvers, various 
efficiency issues were observed: ALEFOR experienced load balance drops 
(from 90% to 74% at 80 nodes), serialization, and transfer efficiency 
decreases, with load imbalance linked to IPC and instruction imbalances. 
NASTIN showed similar drops in load balance and issues with 
serialization and transfer efficiency, with load imbalance in its "Element 
Assembly" part correlated with high L1 cache misses and in its "Solver 
Continuity" part with higher L3 cache misses. SOLIDZ exhibited low load 
balance and serialization at 80 nodes, primarily due to long bursts with 
low IPC caused by cache misses. 
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One specific suggestion was made related to the identified "noise" affecting 
serialization in ALEFOR was made: this kind of noise can be avoided by 
reducing the number of MPI collective calls, as other ranks wait for the 
affected one 

3.6 POP3_AR_019 
The analyzed application is an open-source version of a commercial code 
primarily used for crash simulation and structural mechanics. It is developed 
using Fortran, OpenMP, and MPI programming languages. The key finding of 
the analysis indicates that OpenMP parallelism has limitations, largely due 
to critical sections and locks within the code, suggesting that it should ideally 
be limited to no more than 4 OpenMP threads per MPI rank. In stark contrast, 
MPI parallelism, both within and between nodes, achieves remarkable 
speed-up with limited time spent in MPI activities and very good load 
distribution. 
 
The application targets "single" runs on a few thousand cores, though typical 
users often launch multiple parallel runs with slightly varied configurations. It 
employs an explicit method with very small time steps, making numerical 
accuracy and reproducibility major concerns. Consequently, any code 
transformations that might impact numerical accuracy, such as fast math 
compiler flags or fused multiply-add (FMA) options, are strictly prohibited. 
Already very long parallel run times imply that a single-core run would take 
several days, rendering classical speed-up measurements impractical and 
leading to huge trace files if full tracing were performed. Specific issues 
identified include significant inactive time and poor resource usage in 
OpenMP configurations, primarily attributed to critical sections and locks. 
 
To improve the scalability, the analysis offers several recommendations. It is 
advised that OpenMP parallelism should preferably be limited to not more 
than 4 OpenMP threads per MPI rank. Furthermore, it is critical to investigate 
limiting the impact of critical sections in OpenMP, even if suppressing them 
entirely proves difficult. Future steps outlined for performance optimization 
include further addressing OpenMP limitations, conducting vectorization 
analysis and optimization, performing compiler analysis (examining flags 
and comparing GNU Fortran with ACFL), and undertaking an analysis of x86 
versus ARM architectures as a second level service. 

3.7 POP3_AR_020 
The performance assessment analysed a C/C++ application that utilizes MPI 
and OpenMP programming models. A key finding of the analysis was that MPI 
Send-Receives and Group communication begin to dominate as the scale 
increases, with the largest run on 16 nodes showing degradation primarily 
in MPI serialization and OpenMP communication, both operating at 80% 
efficiency. 
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The application's performance is characterized by a solver that includes four 
groups of bursts, with most of the execution time spent in very long bursts 
lasting approximately 1 to 30 seconds. While load balance efficiencies are 
generally high due to imbalances compensating over time across all steps, a 
significant portion of MPI time is consumed by collective operations such as 
MPI_Allreduce, MPI_Alltoall, MPI_Sendrecv, and 
MPI_Allgather. The MPI Serialization Efficiency (MPI SE) varies among 
routines, with DD1 showing 100% efficiency and GRAV, the longest routine, at 
92%. However, DENS, a long routine with 86% MPI SE, is identified as a prime 
candidate for improvement. 
 
To improve the scalability of the application, several potential steps are 
recommended. These include implementing communication overlap with 
computation by using non-blocking communication. Additionally, 
optimizing collective operations is advised to mitigate the increasing 
overhead of MPI communication at higher scales. Finally, fusing OpenMP 
loops is suggested as a way to enhance performance, particularly to address 
the observed small granularity in some OpenMP functions. 

3.8 POP3_AR_021 
The application analysed in the performance assessment is a code primarily 
used for near-Earth plasma simulations. The key findings highlight 
significant performance bottlenecks, primarily stemming from instruction load 
imbalance and unneeded forced serialization of communication. 
 
The performance characteristics within the 'Propagate' slice (which constitutes 
69% of the focus of analysis), reveal several issues. In one region, egion, 
there's an instantiation of non-blocking sends and receives, but 
communication is forced to complete in order of instantiation, involving 
many MPI_Waitall calls. There is significant data transfer, with total bytes 
transferred reaching 6.35TB for transfer-stencil-data-z and 2.6TB for 
update_remote-z. A major concern is uneven bandwidth utilization, 
which leads to load imbalance due to communication, and performance is 
more sensitive to bandwidth than latency. Furthermore, the compute-
mapping-z sub-region exhibits an instruction load imbalance caused by 
uneven instruction distribution across MPI processes. In Propagate-
magnetic-field, OpenMP worksharing worsens the instruction load 
imbalance, with one thread appearing to be the root cause of de-
synchronization. 
 
To improve the scalability of the application, the identified issues directly 
suggest areas for optimization. It is crucial to address the unneeded forced 
serialization of communication to allow for more asynchronous progression. 
Efforts should also focus on strategies to improve uneven bandwidth 
utilization and reduce the resulting load imbalance during communication 
phases. 
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3.9 POP3_AR_022 
The assessed application is an OpenMP application. Written in Fortran with 
OpenMP, it incorporates LAPACK and BLAS routines and is designed to 
execute 192 energy steps using strong scaling. This performance assessment 
aimed to re-evaluate a new version of the code after a previous POP2 
assessment identified a routine limiting scalability. The key finding of this 
assessment is that, despite improvements in vectorization and a shifted 
hotspot, the application does not scale even to a low number of threads, 
exhibiting a significant speedup decrease from 48 to 96 cores. Currently, 
90% of the total runtime is concentrated in the LAPACK routine zgesv, 
which has become the primary bottleneck for scalability. 
 
The application's performance characteristics reveal several issues contributing 
to its poor scalability. On the CPU side, a significant problem is that clock 
frequency scales down when all cores of a socket utilize AVX512 
instructions, impacting performance as core count increases. Memory-related 
issues are also prominent, with an increasing number of remote NUMA 
accesses observed as thread count rises, reaching 68.1% with 96 threads from 
0.0% with 12 threads. Additionally, OpenMP imbalances were identified in 
certain loops, where inner-loop iterations decrease significantly for outer-loop 
iterations scheduled to high thread IDs. 
 
To improve the application's scalability, several recommendations have been 
put forth. To address the issue of increasing remote NUMA accesses, it is 
suggested to reduce them by using MPI and allocating chunks per process. 
To counter the frequency decrease and CPU throttling experienced when 
many cores use vector instructions, a primary recommendation is to offload 
the zgesv kernel, and potentially other parallel regions, to a GPU, possibly 
utilizing GPU-enabled libraries like MAGMA and OpenMP Target Offloading. 
For the identified OpenMP imbalances in specific parallel loops, switching to 
a dynamic schedule from the implicit static one is advised. Finally, further 
OpenMP parallelization should be implemented. 

3.10 POP3_AR_023 
The application is an N-Body Simulation. It was assessed on a single compute 
node, utilizing 2x Intel Sapphire Rapids CPUs and 4x NVIDIA H100 GPUs, as 
the application uses OpenMP and OpenMP-Target (GPU) programming 
models and was tested with input cases ranging from approximately 100,000 to 
1 million bodies. The key finding of the analysis was that full resource 
utilization (of 4 GPUs) was not achieved, even with the largest problem 
size, and for smaller problem sizes, there was no scaling beyond 2 GPUs. 
 
The performance characteristics indicate several areas of concern. The 
application has a single-threaded initialization phase, while the integration 
phase involves one OpenMP thread per GPU, with iterative calls of a single 
kernel and small data transfers and I/O between iterations. While there were no 
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major issues in work distribution across GPUs, showing almost perfect load 
balancing and no significant efficiency decrease due to data transfers, the CPU 
remained idle during GPU computation, leading to wasted CPU resources. The 
analysis highlighted low memory throughput, which further decreased with 
the use of more GPUs. This low memory utilization was attributed to low GPU 
occupancy, which was also found to be decreasing with more GPUs. The 
theoretical occupancy was noted to be low at 43.75% due to too many registers 
being used per thread, and the achieved occupancy was even lower due to a 
partial wave (tail loop). Other observations included minor load balance issues 
on the GPU, likely due to the partial wave, and an incorrect usage of the 
OpenMP standard where device pointers were not marked correctly. 
 
To improve the scalability of the application, several recommendations were 
put forward. It was suggested that more fine-grained loop distribution could 
increase achieved occupancy. Specifically, parallelizing the inner loop 
(reduction) and distributing the outer loop could lead to more small kernels and 
higher occupancy, potentially also reducing registers per thread. Crucially, the 
device pointers must be correctly marked with the is_device_ptr 
clause in the OpenMP target pragma. To mitigate the tail effect, increasing the 
number of blocks launched was recommended. Furthermore, addressing the 
underutilized CPU was suggested, possibly by partitioning bodies for CPU 
processing as well, complementing the GPU partitioning. The analysis also 
noted that OpenMP Target provides limited room for optimization, implying that 
other compilers might offer better performance or more flexibility (NVHPC 
24.9 was used). 

3.11 POP3_AR_024 
The performance assessment was on a software package designed for the 
simulation of seismic wave propagation based on the spectral-element 
method. The assessment was carried out on the Leonardo-Booster HPC 
system. This application, which uses Fortran90 (with some C) and is 
parallelized with MPI and CUDA (one MPI process per GPU), was assessed 
the ChEESE CoE. The key finding of the assessment, particularly regarding the 
'v2' revised version, was a considerable performance improvement for the 
largest execution configuration involving 512 GPUs, where its strong 
scaling efficiency increased significantly from 51% to 67%. This improvement 
was primarily attributed to much more efficient orchestration of GPU 
devices via the exploitation of GPU-Aware MPI. 
 
The code exhibits excellent weak scaling, which is expected to continue to 
higher node counts, and showed no change in this characteristic with the v2 
updates. For strong scaling, the application achieved very good performance 
(above 80% of perfect) up to approximately 64 compute nodes, which 
corresponds to 256 GPUs. The core of the analysis focused on the 
xspecfem3D/iterate_time solver routine, which includes all CUDA kernel 
executions. In the initial assessment, performance limitations at higher GPU 
counts (256 and 512 GPUs) included growing GPU idle time and substantial 
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CPU computation time due to explicit host-device data transfers, with MPI 
communication no longer fully overlapping GPU kernel computation at 512 
GPUs. With the 'v2' revisions, while GPU computation time still slowly grew, 
CPU computation time became negligible as the explicit data transfers were 
eliminated. Furthermore, CUDA kernel execution was approximately 1.5% 
faster on 512 GPUs, and overall GPU idle time was reduced. 
 
The significant improvements in strong scaling, particularly for larger 
configurations, in the 'v2' assessment highlight specific recommendations for 
enhancing the scalability of HPC applications like this one. The primary 
recommendation is to migrate from non-GPU-Aware MPI libraries (such as 
Intel oneAPI MPI) to GPU-Aware MPI implementations. This transition 
eliminates the need for explicit data transfers between the host and 
device, thereby making CPU computation time negligible and improving 
orchestration efficiency. Additionally, it was suggested that using optimized 
and current compiler and runtime environments can yield further 
performance gains 

3.12 POP3_AR_025 
The analyzed application is a high-performance computing application for 
Nuclear Fuel Cycle Simulation, encompassing the entire cycle from fuel 
production and consumption in reactors to cooling, reprocessing, and waste 
storage. It is primarily written in C++ and OpenMP (without MPI). 
 
The analysis identified that the code's single-core performance is limited by 
poor vectorization and significant time spent in the ROOT library, with only 
45% of execution time in user code. The OpenMP version shows only minor 
gains up to 4 cores before experiencing a slowdown, largely due to active 
waiting (OMP_Wait). In contrast, the concurrent weak scaling mode 
exhibited very good performance, with only about a 10% slowdown when 
scaling from 1 to 52 instances, indicating efficient handling of parametric 
exploration workloads. 
 
To improve the scalability of the application, several recommendations were 
put forth. For the single-core version, since only a small fraction of the large 
General Purpose ROOT library is utilized, it might be beneficial to replace it 
with a custom implementation of the specifically needed routines. 
Furthermore, the code is currently not vectorizable, meaning major refactoring 
would be required to enable vectorization and achieve potential gains in this 
area. For the OpenMP version, the analysis concluded that simple 
parallelization at the innermost loop level does not yield significant 
benefits beyond 4 cores. Given the nature of the code, which consists mostly 
of independent components, Task Parallelism could be a more effective 
approach to improve scalability, though this would also necessitate a major 
refactoring effort. 
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4. Open assessments summary 
At the time of this writing, POP3 has 34 Open assessments. 10 of theses were 
not requested by any EuroHPC Centre of Excellence, 1 by SPACE, 1 by 
ESIWACE, 1 by EoCoE3, 2 by Plasma-PEPSC, 3 by EXCELLERAT, 5 by 
CEEC, 12 by ChEESE2. 
 
Of the Open assessments, there are 4 that do not use MPI, but only OpenMP. 
There are 17 performance assessments that require the use of GPUs. 
 
All of these assessments are ongoing, except for one that is blocked due to an 
NDA requirement. 

 

5. Conclusion 
During the M13-M18 months of the project reported here, we have finalized 10 
performance assessments. One additional assessment is expected to be 
closed by the end of June and will be reported in the next deliverable D3.5 
[M24]. 
 
Most of these assessments have been done for other EuroHPC Centres of 
Excellence. These assessments have been challenging because they use 
state-of-the-art features of the programming models. When aspects were not 
fully / well supported by some of our tools, this information was passed on to 
the tool improvement task in WP4. In these cases and when necessary, we 
have used alternative tools or methods to be able to conduct the assessments. 
 
One other notable challenge continues to be to get the codes and the inputs 
from the CoE customers in a timely manner. 
 
Of all the service requests received, we see that most of them continue to 
require one of the European pre-exascale systems and our tool development is 
planned accordingly. 
 
Regarding the programming models used, we observe that the standard de-
facto continues to be MPI for the distributed memory level, while for the 
threading and GPU levels, there is more variety, the most used ones: OpenMP, 
CUDA, and OpenACC.  
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