D3.4 Third update on the assessed

applications/codes
Version 1.0

Document Information
Contract Number 101143931

Project Website

WWW.pOop-coe.eu

Contractual Deadline M18, June 2025
Dissemination Level PU

Nature
Author
Contributor(s)
Reviewer
Keywords

R

Christian Terboven (RWTH)

Radim Vavfik (IT4l@VSB)

Ondrej Vysocky (IT4l@VSB)

Performance optimization, Scalability, Efficiency

This project has received funding from the European High-Performance
Computing Joint Undertaking (JU) under grant agreement No 101143931.
The JU receives support from the European Union’s Horizon Europe
research and innovation programme and Spain, Germany, France,
Portugal, and the Czech Republic.

© 2025 POP Consortium Partners. All rights reserved.

http://www.pop-coe.eu/

D3.4 Third update on the assessed applications/codes

Version 1.0

000

Change Log
Version Author
V0.1 Christian Terboven
V0.2 Christian Terboven
V0.3 Christian Terboven
V0.5 Christian Terboven
V1.0 Elena Markocic

Description of Change

Initial Draft

Chapters 1, 2 and 4 complete, about half-
way done with Chapter 3 (for internal
review)
All chapters completed (for internal
review)

Response to internal review

Document formatted for submission

D3.4 Third update on the assessed applications/codes @ @ @

Version 1.0

Table of Contents

EXECULIVE SUMMANYcoiiiiiiiccecrtir s csenr s r s s ssse s s e s e s s smn e e e e e s s snme e e e e e s e nmnns 4
1. INtroducCtion ... ———————— 4
2. Assessments characterization...........ccccceiiiimin 5
2.1 Origin of @SSESSMENTScciiiiiiiiiiiie e 5
2.2 Cluster used for @ssesSMeNt.........cccooiiiiiiiiiiii e 5
2.3 Programming MOEIScocuiiiiiiiiiiiiiie s 6
3. Completed assesSSmMeNtS SUMMAIYccccceeriiiccrsmmerereisssssssssseessessssssssssssessessses 9
3.1 Scaling of COAES aSSESSEAoouiiiiiiiiiii e 9
3.2 Analysis of Efficiencies measured...........ccccveeveeeiiiiciiiieiee e 9
TR T O] = A o 0 1 TSRS 11
34 POPS3_AR 017 ittt ettt e nre e 11
3.5 POP3_AR 018 ..ottt e e e et n e nneenaeea 12
3.8 POP3_AR 019 ittt 13
3.7 POPS3_AR 020 ...citiiiiiiiiiiee ettt ettt st 13
3.8 POP3_AR 027 ittt ettt ettt e e et e naeenaeea 14
3.9 POPS3_AR 022 ...ttt ettt 15
310 POPS3_AR 023 ... ittt e naeenneea 15
3.1 POP3 AR _D24 ...ttt 16
312 POP3_AR 025, ittt neee 17
4. Open asseSSMENtS SUMMANYccceerriiesssssmerrssssssssssssssessssssssssssssssssssssssssnsnns 18
ES T 0o 4 ¥ =3 oY N 18

D3.4 Third update on the assessed applications/codes
Version 1.0 e o G

Executive Summary

This deliverable includes a summary of the work carried out by Task 3.1
Assessments during the months 12 to 18 of the project.

1. Introduction

In this document, we report the data gathered and generated from the
performance assessments requests’ received by the project. The assessments
handled by the project go through several states. When a request for
(assessment) service is received, its status is Received, once it has been
accepted and assigned to one of the partners, we consider it Open. An open
assessment can be Blocked for technical, legal, or other reasons. When an
assessment is closed successfully after presenting the results to the customer,
we consider it Completed. An Open or Blocked assessment can be cancelled if
unsolvable issues are detected. Further process details including our data
collection methodology have been presented in Deliverable D3.2.

The document is divided into three main parts. The first one (Chapter 2)
characterizes up to 60 requests and codes received, which means it considers
all the requests of assessments Received, Completed, and Open, where data
was available at the end of May 2025. The data used in this part of the report
comes from the information provided by the customer in the two initial forms?,
partially annotated or extended by the POP3 performance analysts while
carrying out the assessment. This data includes the parallel programming
models supported, the HPC cluster requested for the assessment, or the source
of the request, among others. This information is relevant to the Tools (T4.3)
and Methodology (T4.4) tasks as it guides the main efforts in the development
of new features of the tools, which use case the methodology should consider,
or which architectures must be supported.

The second part (Chapter 3) of this document analyses the performance data
gathered from 10 Completed assessments since M12. This section of the
document is based on the information provided by the analysts in the final
assessment form and the final report.

Finally, the third part (Chapter 4) of this deliverable briefly summarizes the Open
assessments.

1 https://www.pop-coe.eu/services
2 https://pop-coe.eu/request-service-form

4

D3.4 Third update on the assessed applications/codes
Version 1.0 @ 0 0

2. Assessments characterization

In this section, we analyse the characteristics of the requests received by Task
3.1 Assessments. The data presented here was assessed by the end of May
2025.

2.1 Origin of assessments

One of the main focuses of POP3 is to analyse the codes of the coexisting
EuroHPC Centres of Excellence (CoEs). Currently, we have received service
requests from 8 different CoEs: CEEC, ChEESE2, EoCoE3, ESIWACE,
EXCELLERAT, MultiXscale, Plasma-PEPSC and SPACE.

Assessments for CoEs m CEEC
B ChEESE2

EoCoE3

m ESIWACE

m EXCELLERAT
MultiXscale

W No CoE
Plasma-PEPSC
SPACE

Figure 1: Distribution of source of performance assessments by CoE

Figure 1 shows the distribution of requests received by the different CoEs and
from other customers (category: No CoE).

2.2 Cluster used for assessment

When a request for a performance assessment is received, the customer
decides in which cluster the code should be assessed. Figure 2 shows the
distribution of the clusters used for the performance assessments. We can
observe a high heterogeneity in the cluster requested for the analysis, which
must be reflected in WP4 (Tools) to focus on supporting a large variety of
hardware. The list of clusters includes the European pre-exascale
supercomputers.

D3.4 Third update on the assessed applications/codes
Version 1.0 @ 0 0

With 14 assessments, Leonardo is the most popular cluster, which was the
preferred system, especially in the ChEESE2 campaign. Further, LUMI and
MNS are very popular with 11 assessments. Just considering these three
systems, it can be noted that they exhibit different architecture in terms of CPU
(Intel vs. AMD) and GPU (NVIDIA vs. AMD). In particular, the differences in
these two HPC accelerator technologies and lower maturity of the AMD
software stack underlines the technical challenges solved in the respective
assessments.

Cluster B AWS Graviton3
M Claix-23
W Customer
W Jupiter
W Karolina
M Leonardo-Booster
M Leonardo-C
W Levante
LUMI-C
mLUMI-G
B MN5 Acc
MN5 GPP
Other
Vega

Figure 2: Distribution of clusters used for performance assessments

2.3 Programming models

In this subsection, we analyse the (parallel) programming models used in the
codes assessed. Regarding parallelism, we analyse three different levels: the
distributed programming model (MPI), shared memory programming model
(threading), and the use of accelerators (GPUs).

First, Figure 3 shows the use of programming languages in the assessments.
C++ and the mixture of C and C++ clearly dominate. Fortran has a fraction of
38%. A small portion of codes use Python in combination with C++.

Figure 4 shows the use of MPI: 94% of the codes analysed use MPI for
distributed memory parallelism. The rest is shared memory and/or GPU only.

D3.4 Third update on the assessed applications/codes
Version 1.0 @ 0 0

Programming Language

mC,C++
mC++
H C++, Python

W Fortran

Figure 3: Use of programming languages

Use of MPI

6%

mNo myes

Figure 4: Use of MPI / distributed memory parallelism

Figure 5 shows the distribution of programming models used at the threading
level for shared memory parallelism, which is relevant for 37% of the codes.
Out of these, OpenMP continues to be the most prominent model. But as we
also encountered other combinations of threading programming models, which
again poses a challenge for the tools and methodology tasks, as analysts must
be able to support all of them and - in particular - their combination.

D3.4 Third update on the assessed applications/codes
Version 1.0 @ 0 0

Threading = None

m OpenACC
m OpenMP
B OpenMP, C++

threads, TBB, SYCL

B OpenMP, pthreads

Figure 5: Use of threading models for shared memory parallelism

With 36% significantly less than half of the codes did not use GPUs at all. The
most-used GPU programming models are CUDA and OpenACC, as shown in
Figure 6.

GPU programming m CUDA

m CUDA, HIP
mHIP

m None

m OpenACC

B OpenMP-Target

m OpenMP, Sycl

CUDA, Sycl

Figure 6: Use of GPU programming models

In this case, the feedback for the Tools task in WP4 is to prioritize support for
CUDA and OpenACC. While, if possible, provide support for OpenMP and
SYCL.

D3.4 Third update on the assessed applications/codes
Version 1.0 @ 0 0

3. Completed assessments summary

In this section, we analyse the data gathered from the Completed assessments
since M12. The data presented here was assessed by mid of June 2025.

3.1 Scaling of codes assessed

Figure 7 shows the maximum number of CPU cores used in the Completed
assessments and the number of assessments using a certain number of
resources. We see a broad distribution in the number of cores used. The
highest values being 12 288 cores.

3,5
3
2,5

2

1,5

0
S H

© X o 0 N N N . T 2
N © ® S SOMPAN 4 QY QN © & ©
N > D7 QT R AN N P g

—_

Figure 7: Maximum number of cores used per assessment

The total number of GPUs used in assessments ranges from 16 to 512 as
shown in Figure 8.

3,5

3
2,5

2

1,5

0
16 32 64 128 256 512

Figure 8: Maximum number of GPUs used per assessment

[EEN

3.2 Analysis of Efficiencies measured

In this section, we briefly analyse the performance gathered from the
performance assessments that have been Completed. The extended number

D3.4 Third update on the assessed applications/codes
Version 1.0 @ 0 0

of metrics gathered as part of the POP methodology has been described in
D3.2.

To avoid having data that is too sparse, we have continued to compute statistics
only for some high-level metrics. We have categorized the efficiencies as
follows:
e Super: Higher than 100%
Very good: Between 100% and 90%
Good: Between 90% and 80%
Fair: Between 80% and 70%
Poor: Between 70% and 60%
Bad: Lower than 60%

In Figure 9, we plot for each metric how many assessments received each kind
of categorization.
20
18 m Bad Poor Fair
16
14
12
10 l [

Good m Very good M Super

8
6
|
: I I I I - - § I l l I
:]
00 o ™ EEEN
= . () c = c W w N N S () c = C W w : N
2 Ecsgceaasa8bcsgsasiasa
17} = © @© <& © s a o O =& <« © ®© < © s a o O =
A c T 2 & 8N £ 5 £ B L e L S5 5 £ 2 B
2 - @5 - <39) £ & @ 5 - 3 g) =
1%} k=l [&) o = o (&)
© o £ [TENS) c £ [THNS)
— o I wn o I [9p]
(] - i}
o o o
£ O o
>
= Strong Weak
Figure 9. Categorization of the efficiencies measured for the Completed performance
assessments

The distribution did not change significantly from the previous six months that
were reported in D3.2 in that we observe a high variation. This underlines, first,
the value of the POP metrics in providing a holistic performance characteristic
supporting a wide range of applications, and second, the need for continued
performance assessments of codes running on modern (large-scale) HPC
systems.

The following subsections detail the assessments that were completed during
the reporting period.

10

D3.4 Third update on the assessed applications/codes /1
Version 1.0 @ 0 0

3.3 POP3_AR 016

The analyzed application is a mini-application extracted from an IFS model.
It performs a global spherical harmonics transformation. The performance
assessment identified a major issue: poor orchestration efficiencies related
to MPI communication and CUDA management. A key finding is that most
of the runtime is spent on frequent MPlI communication and CPU—~GPU
data transfers, while useful computation forms only a small part of the
overall execution time.

The initialization phase accounts for 52% of the total runtime, with
processes 0 and 15 spending significant time in MPI Allgatherv, primarily
involving CPUs. The initial step of the iterative computation takes 22% of the
runtime, characterized by GPU—CPU data transfers, CUDA data loadings, and
device memory allocations, leading to imbalances and longer MPI Barriers
for certain ranks. The Region of Interest (Rol), where GPUs are mainly used,
only sees GPUs actively computing for approximately 2 seconds, which
is just 17% of the Rol's runtime; the rest of the time is spent idling, in data
transfers, and synchronization routines. Further, the application suffers from
frequent waiting in blocking collective communication, barriers, and wait-
all calls, with 54% of the time spent on data transfers (CPU-GPU and MPI)
on average. The MPI synchronization part, particularly barriers,
significantly expands with more resources, growing from 9% to 29% of the
total runtime. While strong scaling is good for 4 and 8 compute nodes, it begins
to stagnate at 16 nodes and does not scale well at 32 nodes. Furthermore, there
is an increasing load imbalance with more resources.

To improve the scalability of the application, several recommendations were
made. It is suggested to review the current communication pattern,
assessing whether all communication and data transfers are necessary and if
the volume of data sent in every step is genuinely required. There's also a
recommendation to explore overlapping communication with computation.
Furthermore, focus should be placed on achieving a more balanced
workload distribution across GPUs. Finally, it is advised to reappraise the
necessity of short kernels and their regular synchronization with the host
to mitigate overheads from stream synchronization and kernel launches.

3.4 POP3_AR_017

The application provides a numerical solution for equations governing fluid flow
in three dimensions, specifically used to simulate the impact of airplane wing
shape on airflow. The key finding of the analysis was that scaling is good up
to 128 GPUs, but beyond this point, communication begins to present a
significant problem for the specific input problem size and parametrization
tackled. The code uses OpenACC as the GPU programming model.

It was profiled scaling from 16 MPI ranks and 16 GPUs up to 512 MPI ranks
and 512 GPUs. While using more GPUs generally resulted in faster execution

11

D3.4 Third update on the assessed applications/codes /1
Version 1.0 @ 0 0

of time-steps and reduced time between MPI calls, Parallel Efficiency was
observed to be 2 90% only up to 64 GPUs. Beyond this, Communication
Efficiency, primarily due to Transfer Efficiency, significantly decreased,
especially with 128 or more GPUs. Furthermore, analysis revealed that host-
device transfers account for a significant portion of execution time and
do not overlap with GPU kernels. Nvidia Nsight Compute analysis
highlighted issues like uncoalesced global and shared memory accesses,
and occupancy bottlenecks in several computationally intensive kernels.

To improve the scalability, several recommendations were identified. Firstly,
addressing the communication pattern that causes contention in inter-node
input links, potentially by reordering inter-process communication, could
reduce communication costs and improve efficiency. Secondly, the low parallel
efficiency during communication phases on large runs could be improved
by advancing or delaying computations to better overlap communication
and computation. Specifically, introducing overlap for host-device transfers,
or even reducing their size and frequency by minimizing dependencies
and retaining data on GPUs for longer periods, could substantially enhance
performance. Lastly, significant improvements could be achieved by
optimizing GPU kernels to mitigate global memory coalescing issues (with
potential gains of 41-66%), addressing uncoalesced shared memory
accesses (35-39% gain), and improving occupancy (up to 40% speedup
potential on some kernels).

3.5 POP3_AR 018

This is a Computational Fluid Dynamics (CFD) code, primarily written in
Fortran and utilizing MPI for parallelization. The simulation was executed with
5, 10, 20, 40, and 80 nodes. The key finding of the analysis was that the
primary issue impacting performance was Serialization, largely due to the
coupling process where one physics waits while the other is running.
Additionally, common issues across the solvers included load imbalance
caused by long computational bursts with low Instructions Per Cycle
(IPC) due to cache misses, and system noise affecting serialization.

Regarding its performance characteristics, the application's total execution
time began to separate from the ideal time at 40 nodes when analyzing
strong scalability over 1000 time steps. Across the individual solvers, various
efficiency issues were observed: ALEFOR experienced load balance drops
(from 90% to 74% at 80 nodes), serialization, and transfer efficiency
decreases, with load imbalance linked to IPC and instruction imbalances.
NASTIN showed similar drops in load balance and issues with
serialization and transfer efficiency, with load imbalance in its "Element
Assembly"” part correlated with high L1 cache misses and in its "Solver
Continuity" part with higher L3 cache misses. SOLIDZ exhibited low load
balance and serialization at 80 nodes, primarily due to long bursts with
low IPC caused by cache misses.

12

D3.4 Third update on the assessed applications/codes /1
Version 1.0 @ 0 0

One specific suggestion was made related to the identified "noise" affecting
serialization in ALEFOR was made: this kind of noise can be avoided by
reducing the number of MPI collective calls, as other ranks wait for the
affected one

3.6 POP3_AR 019

The analyzed application is an open-source version of a commercial code
primarily used for crash simulation and structural mechanics. It is developed
using Fortran, OpenMP, and MPI programming languages. The key finding of
the analysis indicates that OpenMP parallelism has limitations, largely due
to critical sections and locks within the code, suggesting that it should ideally
be limited to no more than 4 OpenMP threads per MPI rank. In stark contrast,
MPI parallelism, both within and between nodes, achieves remarkable
speed-up with limited time spent in MPI activities and very good load
distribution.

The application targets "single" runs on a few thousand cores, though typical
users often launch multiple parallel runs with slightly varied configurations. It
employs an explicit method with very small time steps, making numerical
accuracy and reproducibility major concerns. Consequently, any code
transformations that might impact numerical accuracy, such as fast math
compiler flags or fused multiply-add (FMA) options, are strictly prohibited.
Already very long parallel run times imply that a single-core run would take
several days, rendering classical speed-up measurements impractical and
leading to huge trace files if full tracing were performed. Specific issues
identified include significant inactive time and poor resource usage in
OpenMP configurations, primarily attributed to critical sections and locks.

To improve the scalability, the analysis offers several recommendations. It is
advised that OpenMP parallelism should preferably be limited to not more
than 4 OpenMP threads per MPI rank. Furthermore, it is critical to investigate
limiting the impact of critical sections in OpenMP, even if suppressing them
entirely proves difficult. Future steps outlined for performance optimization
include further addressing OpenMP limitations, conducting vectorization
analysis and optimization, performing compiler analysis (examining flags
and comparing GNU Fortran with ACFL), and undertaking an analysis of x86
versus ARM architectures as a second level service.

3.7 POP3_AR_020

The performance assessment analysed a C/C++ application that utilizes MPI
and OpenMP programming models. A key finding of the analysis was that MPI
Send-Receives and Group communication begin to dominate as the scale
increases, with the largest run on 16 nodes showing degradation primarily
in MPI serialization and OpenMP communication, both operating at 80%
efficiency.

13

D3.4 Third update on the assessed applications/codes '
Version 1.0 @ 0 0

The application's performance is characterized by a solver that includes four
groups of bursts, with most of the execution time spent in very long bursts
lasting approximately 1 to 30 seconds. While load balance efficiencies are
generally high due to imbalances compensating over time across all steps, a
significant portion of MPI time is consumed by collective operations such as
MPI Allreduce, MPI Alltoall, MPI Sendrecv, and
MPI Allgather. The MPI Serialization Efficiency (MPI SE) varies among
routines, with DD1 showing 100% efficiency and GRAV, the longest routine, at
92%. However, DENS, a long routine with 86% MPI SE, is identified as a prime
candidate for improvement.

To improve the scalability of the application, several potential steps are
recommended. These include implementing communication overlap with
computation by using non-blocking communication. Additionally,
optimizing collective operations is advised to mitigate the increasing
overhead of MPlI communication at higher scales. Finally, fusing OpenMP
loops is suggested as a way to enhance performance, particularly to address
the observed small granularity in some OpenMP functions.

3.8 POP3_AR_021

The application analysed in the performance assessment is a code primarily
used for near-Earth plasma simulations. The key findings highlight
significant performance bottlenecks, primarily stemming from instruction load
imbalance and unneeded forced serialization of communication.

The performance characteristics within the 'Propagate’ slice (which constitutes
69% of the focus of analysis), reveal several issues. In one region, egion,
there's an instantiation of non-blocking sends and receives, but
communication is forced to complete in order of instantiation, involving
many MPI Waitall calls. There is significant data transfer, with total bytes
transferred reaching 6.35TB for transfer-stencil-data-z and 2.6TB for
update remote-z. A major concern is uneven bandwidth utilization,
which leads to load imbalance due to communication, and performance is
more sensitive to bandwidth than latency. Furthermore, the compute-
mapping-z sub-region exhibits an instruction load imbalance caused by
uneven instruction distribution across MPI processes. In Propagate-
magnetic-field, OpenMP worksharing worsens the instruction load
imbalance, with one thread appearing to be the root cause of de-
synchronization.

To improve the scalability of the application, the identified issues directly
suggest areas for optimization. It is crucial to address the unneeded forced
serialization of communication to allow for more asynchronous progression.
Efforts should also focus on strategies to improve uneven bandwidth
utilization and reduce the resulting load imbalance during communication
phases.

14

D3.4 Third update on the assessed applications/codes '
Version 1.0 @ 0 0

3.9 POP3_AR 022

The assessed application is an OpenMP application. Written in Fortran with
OpenMP, it incorporates LAPACK and BLAS routines and is designed to
execute 192 energy steps using strong scaling. This performance assessment
aimed to re-evaluate a new version of the code after a previous POP2
assessment identified a routine limiting scalability. The key finding of this
assessment is that, despite improvements in vectorization and a shifted
hotspot, the application does not scale even to a low number of threads,
exhibiting a significant speedup decrease from 48 to 96 cores. Currently,
90% of the total runtime is concentrated in the LAPACK routine zgesv,
which has become the primary bottleneck for scalability.

The application's performance characteristics reveal several issues contributing
to its poor scalability. On the CPU side, a significant problem is that clock
frequency scales down when all cores of a socket utilize AVX512
instructions, impacting performance as core count increases. Memory-related
issues are also prominent, with an increasing number of remote NUMA
accesses observed as thread count rises, reaching 68.1% with 96 threads from
0.0% with 12 threads. Additionally, OpenMP imbalances were identified in
certain loops, where inner-loop iterations decrease significantly for outer-loop
iterations scheduled to high thread IDs.

To improve the application's scalability, several recommendations have been
put forth. To address the issue of increasing remote NUMA accesses, it is
suggested to reduce them by using MPI and allocating chunks per process.
To counter the frequency decrease and CPU throttling experienced when
many cores use vector instructions, a primary recommendation is to offload
the zgesv kernel, and potentially other parallel regions, to a GPU, possibly
utilizing GPU-enabled libraries like MAGMA and OpenMP Target Offloading.
For the identified OpenMP imbalances in specific parallel loops, switching to
a dynamic schedule from the implicit static one is advised. Finally, further
OpenMP parallelization should be implemented.

3.10POP3_AR_023

The application is an N-Body Simulation. It was assessed on a single compute
node, utilizing 2x Intel Sapphire Rapids CPUs and 4x NVIDIA H100 GPUs, as
the application uses OpenMP and OpenMP-Target (GPU) programming
models and was tested with input cases ranging from approximately 100,000 to
1 million bodies. The key finding of the analysis was that full resource
utilization (of 4 GPUs) was not achieved, even with the largest problem
size, and for smaller problem sizes, there was no scaling beyond 2 GPUs.

The performance characteristics indicate several areas of concern. The
application has a single-threaded initialization phase, while the integration
phase involves one OpenMP thread per GPU, with iterative calls of a single
kernel and small data transfers and I/O between iterations. While there were no

15

D3.4 Third update on the assessed applications/codes /1
Version 1.0 @ 0 0

major issues in work distribution across GPUs, showing almost perfect load
balancing and no significant efficiency decrease due to data transfers, the CPU
remained idle during GPU computation, leading to wasted CPU resources. The
analysis highlighted low memory throughput, which further decreased with
the use of more GPUs. This low memory utilization was attributed to low GPU
occupancy, which was also found to be decreasing with more GPUs. The
theoretical occupancy was noted to be low at 43.75% due to too many registers
being used per thread, and the achieved occupancy was even lower due to a
partial wave (tail loop). Other observations included minor load balance issues
on the GPU, likely due to the partial wave, and an incorrect usage of the
OpenMP standard where device pointers were not marked correctly.

To improve the scalability of the application, several recommendations were
put forward. It was suggested that more fine-grained loop distribution could
increase achieved occupancy. Specifically, parallelizing the inner loop
(reduction) and distributing the outer loop could lead to more small kernels and
higher occupancy, potentially also reducing registers per thread. Crucially, the
device pointers must be correctly marked with the is device ptr
clause in the OpenMP target pragma. To mitigate the tail effect, increasing the
number of blocks launched was recommended. Furthermore, addressing the
underutilized CPU was suggested, possibly by partitioning bodies for CPU
processing as well, complementing the GPU partitioning. The analysis also
noted that OpenMP Target provides limited room for optimization, implying that
other compilers might offer better performance or more flexibility (NVHPC
24.9 was used).

3.11POP3_AR_024

The performance assessment was on a software package designed for the
simulation of seismic wave propagation based on the spectral-element
method. The assessment was carried out on the Leonardo-Booster HPC
system. This application, which uses Fortran90 (with some C) and is
parallelized with MPI and CUDA (one MPI process per GPU), was assessed
the ChEESE CoE. The key finding of the assessment, particularly regarding the
'v2' revised version, was a considerable performance improvement for the
largest execution configuration involving 512 GPUs, where its strong
scaling efficiency increased significantly from 51% to 67%. This improvement
was primarily attributed to much more efficient orchestration of GPU
devices via the exploitation of GPU-Aware MPI.

The code exhibits excellent weak scaling, which is expected to continue to
higher node counts, and showed no change in this characteristic with the v2
updates. For strong scaling, the application achieved very good performance
(above 80% of perfect) up to approximately 64 compute nodes, which
corresponds to 256 GPUs. The core of the analysis focused on the
xspecfem3D/iterate time solver routine, which includes all CUDA kernel
executions. In the initial assessment, performance limitations at higher GPU
counts (256 and 512 GPUs) included growing GPU idle time and substantial

16

D3.4 Third update on the assessed applications/codes /1
Version 1.0 @ 0 0

CPU computation time due to explicit host-device data transfers, with MPI
communication no longer fully overlapping GPU kernel computation at 512
GPUs. With the 'v2' revisions, while GPU computation time still slowly grew,
CPU computation time became negligible as the explicit data transfers were
eliminated. Furthermore, CUDA kernel execution was approximately 1.5%
faster on 512 GPUs, and overall GPU idle time was reduced.

The significant improvements in strong scaling, particularly for larger
configurations, in the 'v2' assessment highlight specific recommendations for
enhancing the scalability of HPC applications like this one. The primary
recommendation is to migrate from non-GPU-Aware MPI libraries (such as
Intel oneAPI MPI) to GPU-Aware MPI implementations. This transition
eliminates the need for explicit data transfers between the host and
device, thereby making CPU computation time negligible and improving
orchestration efficiency. Additionally, it was suggested that using optimized
and current compiler and runtime environments can yield further
performance gains

3.12POP3_AR_025

The analyzed application is a high-performance computing application for
Nuclear Fuel Cycle Simulation, encompassing the entire cycle from fuel
production and consumption in reactors to cooling, reprocessing, and waste
storage. It is primarily written in C++ and OpenMP (without MPI).

The analysis identified that the code's single-core performance is limited by
poor vectorization and significant time spent in the ROOT library, with only
45% of execution time in user code. The OpenMP version shows only minor
gains up to 4 cores before experiencing a slowdown, largely due to active
waiting (OMP_Wait). In contrast, the concurrent weak scaling mode
exhibited very good performance, with only about a 10% slowdown when
scaling from 1 to 52 instances, indicating efficient handling of parametric
exploration workloads.

To improve the scalability of the application, several recommendations were
put forth. For the single-core version, since only a small fraction of the large
General Purpose ROOT library is utilized, it might be beneficial to replace it
with a custom implementation of the specifically needed routines.
Furthermore, the code is currently not vectorizable, meaning major refactoring
would be required to enable vectorization and achieve potential gains in this
area. For the OpenMP version, the analysis concluded that simple
parallelization at the innermost loop level does not yield significant
benefits beyond 4 cores. Given the nature of the code, which consists mostly
of independent components, Task Parallelism could be a more effective
approach to improve scalability, though this would also necessitate a major
refactoring effort.

17

D3.4 Third update on the assessed applications/codes 1
Version 1.0 @ o Q

4. Open assessments summary

At the time of this writing, POP3 has 34 Open assessments. 10 of theses were
not requested by any EuroHPC Centre of Excellence, 1 by SPACE, 1 by
ESIWACE, 1 by EoCoE3, 2 by Plasma-PEPSC, 3 by EXCELLERAT, 5 by
CEEC, 12 by ChEESEZ2.

Of the Open assessments, there are 4 that do not use MPI, but only OpenMP.
There are 17 performance assessments that require the use of GPUs.

All of these assessments are ongoing, except for one that is blocked due to an
NDA requirement.

5. Conclusion

During the M13-M18 months of the project reported here, we have finalized 10
performance assessments. One additional assessment is expected to be
closed by the end of June and will be reported in the next deliverable D3.5
[M24].

Most of these assessments have been done for other EuroHPC Centres of
Excellence. These assessments have been challenging because they use
state-of-the-art features of the programming models. When aspects were not
fully / well supported by some of our tools, this information was passed on to
the tool improvement task in WP4. In these cases and when necessary, we
have used alternative tools or methods to be able to conduct the assessments.

One other notable challenge continues to be to get the codes and the inputs
from the CoE customers in a timely manner.

Of all the service requests received, we see that most of them continue to
require one of the European pre-exascale systems and our tool development is
planned accordingly.

Regarding the programming models used, we observe that the standard de-
facto continues to be MPI for the distributed memory level, while for the
threading and GPU levels, there is more variety, the most used ones: OpenMP,
CUDA, and OpenACC.

18

	Executive Summary
	1. Introduction
	2. Assessments characterization
	2.1 Origin of assessments
	2.2 Cluster used for assessment
	2.3 Programming models

	3. Completed assessments summary
	3.1 Scaling of codes assessed
	3.2 Analysis of Efficiencies measured
	3.3 POP3_AR_016
	3.4 POP3_AR_017
	3.5 POP3_AR_018
	3.6 POP3_AR_019
	3.7 POP3_AR_020
	3.8 POP3_AR_021
	3.9 POP3_AR_022
	3.10 POP3_AR_023
	3.11 POP3_AR_024
	3.12 POP3_AR_025

	4. Open assessments summary
	5. Conclusion

