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Executive Summary

This deliverable reports about the overall work done in Work Package 8 Tools and Methodology in
the 36+6 months of the POP-2 Center of Excellence. It supersedes the previous D8.1 document that
reported on the progress after the first 18months of the project. As suggested in the project proposal,
the document first summarizes the efforts that we made towards extending the POP methodology
to cover additional areas of interest for performance analysis. The extended POPmethodology now
incorporates hybrid inter- and intra-node parallelism and vectorization, but also the cost of I/O. We
developed three concrete proposals to integrate hybrid use cases into the POP methodology. We
also propose additional metrics for vectorization. Moreover, we make proposals for I/O metrics as
complementary metrics to our existing hierarchy of metrics. We applied the hybrid metrics to POP
assessments to derive a better understanding about the expressiveness and the advantages of the
three different proposals. However, for the proposed I/O metrics we did not find enough use cases
in the performance assessment to conduct a thorough investigation on the impact of I/O metric to
improve performance. We discuss our experiences in this report.

Finally, we report about the tool development performed in the context of this work package.
The development effort includes support for POP specific use cases, the release of new features
in the analysis tools, as well as improvements towards better usability of the tools. In addition
to the existing tools, two new tools have been developed. The first one called PyPOP based on
Jupiter Notebook has the potential to greatly improve the sustainability of POP. PyPOP supports
the POP analysis and semi-automatically prepares a report. The second one is a prototype tool that
implements a lightweight calculation of hybrid POP metrics, according to our third proposal for a
hybrid efficiency model, in an online fashion during runtime of a parallel program.
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1 Introduction

The objective of POP is to analyze and quantify the performance of parallel applications. A key
characteristic of parallel applications is the parallel performance. Figure 1 displays the hierarchy
of POP metrics, as defined in phase 1 of the POP project. The idea of using a metrics hierarchy to
understand parallel performance issues is immensely powerful, as it allows users to immediately see
which issue or issues are impacting performance, e.g., poor computational scaling versus inefficient
parallelism. In particular, a hierarchy where top-level metrics are split into individual child metrics
allows users to drill down and quickly get a detailed understanding of the relative importance of
a range of issues. The hierarchical view of metrics also helps the user to focus on the most severe
performance issue of a code. As also shown in the figure, the childmetrics in this hierarchymultiply
to get the parent metric.

Figure 1: Hierarchy of POP metrics
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In textbooks we can find a typical definition of parallel efficiency:

parallel efficiency = serial runtime
parallel runtime × execution units

In the definition of parallel efficiency in POP, we assume that serial runtime is equal to the useful
computation time,measured as the execution time outside of parallel runtime implementation (e.g.,
MPI runtime library calls). Starting from

parallel efficiency =
𝑎𝑣𝑔(useful computation)

parallel runtime

we break down into the factors

load balance =
𝑎𝑣𝑔(useful computation)
𝑚𝑎𝑥(useful computation)

and
communication efficiency =

𝑚𝑎𝑥(useful computation)
parallel runtime

.
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In this work, we first describe our extensions made to these metrics. These extensions include
three proposals of hierarchical metrics that support hybrid use-cases such as MPI+X codes. More-
over, we propose newmetrics, which fit into theComputation Efficiency subtree of our existing hier-
archy, to assess the vectorization of a code. We also propose metrics that cover the influence of file
I/O. Our extensions have been used in performance assessments byworkpackage 5. To conclude the
first part of this documentwe demonstrate the practical usefulness of our extensions by highlighting
some interesting assessments from workpackage 5 and discuss the advantages and disadvantages
of the three hybrid metrics proposals.

Since we rely on performance analysis tools to collect and provide the data for POP audits, we
describe our development efforts that have been done to extend our existing analysis tools in the
second part of this document. This includes the applicability to previously not supported features
of parallel programming paradigms as well as the integration of our proposed extensions to the POP
methodology to enable the POP services using them.

6
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2 Extensions made to the methodology

2.1 Metric definition for hybrid MPI + OpenMP

To exploit the full potential of today’s HPCmachines, many applications adopt a hybrid distributed
and shared memory programming model. The most commonly used approach is to use MPI for
distributed memory and OpenMP for shared memory parallelization. Since the two paradigms are
conceptually orthogonal, we also propose to reflect them orthogonally in the hybrid metric model.
Extending the original POP-1 metrics to include hybrid parallelism proved to be more complicated
than expected before the start of the project. The combination of two or even more different pro-
gramming paradigms results in a lot of corner cases that an extended model needs to cover. On
the one hand the model should be general enough to cover different programming paradigms. On
the other hand the model should also provide meaningful insights into a specific programming
paradigm. A key reason POP methodology allows a clear understanding is that individual ineffi-
ciency contributions are attributed to a single low-level metric, allowing unambiguous interpreta-
tion. Thus, we propose three sets of hybrid metrics to assess these kinds of applications. All of
them also take full advantage of this hierarchical methodology. One of the proposed methodolo-
gies deviates from the current POP MPI metrics, where the hybrid metrics are additive instead of
multiplicative. Our second and third proposal maintain the approach of original POPMPI metrics,
where the parent metric is the product of its child metrics. The additive methodology adopted by
the hybrid scheme is described first and has two advantages. Firstly, each hybrid efficiency metric
measures the total cost of the issue(s) under consideration, i.e. relative to the runtime. And sec-
ondly, this additive scheme gives more freedomwhen defining child metrics. This hybrid hierarchy
can be used with pure OpenMP or pureMPI codes. For the latter case, it gives an additive version of
the POP MPI hierarchy, i.e., load balance efficiency and serialization efficiency are redefined while
all other metrics have the same definition for multiplicative and additive schemes. The multiplica-
tivemethodology adopted by the hybrid scheme is described afterward and follows the existing POP
MPI metrics more closely. The third proposal was developed towards the end of the project after ex-
periences with the previous twomodels were alreadymade. It follows the existing POPMPImetrics
very similarly but also allows to breakdown all of the lowest level child metrics of parallel efficiency
(i.e. load balance, serialization and transfer efficiency) for theMPI and OpenMP programmingmod-
els separately. Both the additive as well as the multiplicative metrics are designed so that they can
be calculated using Extrae as well as ScoreP trace data. The third proposal relies on critical path
analysis that has been implemented in a prototype tool but should be transferable to our existing
tools with manageable effort. In the current state, the metrics discussed in this section ignore the
influence of I/O, respectively, taking the influence of I/O as given. Therefore, I/O is interpreted as
useful computation orMPI time. To understand the expressiveness of each of themultiplicative and
additive sets of hybrid metrics, we apply both for POP assessments of hybrid applications. Based on
the results of such assessments, we discuss the expressiveness of all three hybrid metrics proposals.
Afterwards, we give recommendations which of our models is best used for which specific use-case.

2.1.1 Glossary of metric terms

7
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Notion of execution units

𝑃 = number of processes
𝑝 ∈ {1…𝑃}
𝑡𝑝 = number of threads of process p
𝑇 =

∑

𝑝
(𝑡𝑝) = total number of threads

𝑡 ∈ {1… 𝑡𝑝}
⬚𝑝,𝑡 = property of thread t on process p

Notion of time

𝑅 = 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 = total execution time

𝑖𝑛𝑂𝑚𝑝𝑝,1 = openmp𝑝 = time spent in parallel region (typically on master)

𝑖𝑛𝑀𝑝𝑖𝑝,𝑡 = mpi = time spent in MPI

𝑢𝑠𝑒𝑓𝑢𝑙𝑝,𝑡 = useful computation on thread t of process p

total useful = total useful computation =
∑

𝑝
(
∑

𝑡
(𝑢𝑠𝑒𝑓𝑢𝑙𝑝,𝑡))

serial mpi = MPI outside of openmp

𝑠𝑢𝑐𝑝,1 = serial useful = useful computation outside of openmp

𝑢𝑐𝑜𝑚𝑝𝑝,𝑡 = omp useful = useful computation inside of openmp

Notion of aggregation

𝑎𝑣𝑔(useful) = total useful
𝑇

𝑎𝑣𝑔(serial useful) =
∑

𝑝(𝑡𝑝 ∗ 𝑠𝑢𝑐𝑝,1)
𝑇

𝑎𝑣𝑔(omp useful) =
total omp useful

𝑇 =

∑
𝑝(
∑

𝑡(𝑢𝑐𝑜𝑚𝑝𝑝,𝑡))
𝑇

𝑎𝑣𝑔(openmp) =
∑

𝑝(𝑡𝑝 ∗ 𝑖𝑛𝑂𝑚𝑝𝑝,1)
𝑇
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2.1.2 Additive hybrid metrics

The metrics hierarchy can be expressed either in terms of efficiencies or inefficiencies:

Efficiency = Ideal Runtime
Actual Runtime

Inefficiency = 1 − Efficiency =
Time spent in inefficiency

Actual Runtime
Parent inefficiency =

∑
Child inefficiencies

Ideal runtime is context-specific. It is the runtime that would be measured if the source(s) of in-
efficiency being considered were removed. For example: For parallel efficiency, it is the runtime
achieved with zero imbalance and no overheads from parallelization, i.e., ideal runtime = average
useful computation. Or for communication efficiency in pure MPI code, it is the runtime with im-
balance but noMPI overheads, i.e., ideal runtime =maximum useful computation. In other words,
what is considered as useful andwhat is considered inefficiency/overhead is totally context-specific.

Figure 2: Hierarchy of additive hybrid metrics
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Parallel efficiency The definition of parallel efficiency in POP metrics assumes that parallel ex-
ecution does not introduce additional computation. Under this assumption, each of the following
definitions is equivalent:

Parallel efficiency =
useful computation
resource allocation = total useful

𝑇 ⋅ 𝑅

=
𝑎𝑣𝑔(useful)

𝑅
= Process efficiency + Thread efficiency − 1

The latter reflects that we can split the parallel inefficiency into two contributions from process and
thread inefficiency.
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Process efficiency At a process level, we completely ignore the thread behavior. This means
there are only three possible states:

1. Outside of OpenMP regions and in MPI

2. Outside of OpenMP regions and in useful computation

3. In OpenMP regions

At a process level, both the time within OpenMP regions (openmp) and the time within serial com-
putation (serial comp) is considered useful, i.e., we only measure inefficiency arising from theMPI.
This means thread inefficiencies (i.e., due to serial computation outside OpenMP and due to any
inefficiency within OpenMP regions) need to be calculated elsewhere. The ideal runtime, in this
case, would be achieved if the time within OpenMP regions and serial computation is split evenly
over the processes with zero overhead from the MPI:

Process efficiency = time outside MPI
resource allocation =

𝑎𝑣𝑔(openmp) + 𝑎𝑣𝑔(serial useful)
𝑅

= MPI comm efficiency + Process LB efficiency − 1

The latter reflects that we can split the process inefficiency into two contributions from MPI com-
munication and process load balance inefficiency.

MPI comm efficiency In the absence of MPI communication and serialisation, the runtime
would be defined by the process with the maximum amount of serial computation and OpenMP:

MPI comm efficiency =
𝑚𝑎𝑥(openmp + serial useful)

𝑅

This can be split into transfer efficiency and serialization efficiency in a similar way to the pure POP
MPI metrics (subject to the necessary functionality being available in Dimemas) with the definition
of the serialization efficiency modified to give an additive (in)efficiency.

Process LB efficiency When considering load imbalance the time cost (i.e., the difference be-
tween ideal runtime and actual runtime) is the difference between avg(openmp+ serial useful) and
max(openmp + serial useful), i.e.

Actual runtime − process load balance ideal runtime
= 𝑚𝑎𝑥(openmp + serial useful) − 𝑎𝑣𝑔(openmp + serial useful)

Process LB efficiency = 1 −
𝑚𝑎𝑥(openmp + serial useful) − 𝑎𝑣𝑔(openmp) − 𝑎𝑣𝑔(serial useful)

𝑅

Thread efficiency At the thread level we have two sources of inefficiency to account for, which
are serial computation on the master outside OpenMP, i.e., Amdahl’s law inefficiency, and Efficien-
cies within OpenMP.

Also consider that we want:
Thread inefficiency = Parallel inefficiency - Process inefficiency

Thread efficiency = 1 −
𝑎𝑣𝑔(openmp) + 𝑎𝑣𝑔(serial useful) − 𝑎𝑣𝑔(useful)

𝑅
10
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Amdahl efficiency Any load imbalance at a process level is already accounted for, sowe consider
the time cost of thread idle time when themaster threads are executing 𝑎𝑣𝑔(serial useful). The time
cost of this inefficiency (i.e., the time that would be gained by parallelizing this serial computation)
is

Amdahl efficiency = 1 −

∑
(serial useful⋅(𝑡𝑝−1))

𝑇
𝑅

OpenMP efficiency If OpenMP regions were 100% efficient the contribution from the OpenMP
regions would equal the average OpenMP useful computation (omp useful) over all threads:

OpenMP efficiency = 1 −
𝑎𝑣𝑔𝑡(openmp𝑡 − omp useful𝑡)

𝑅

Note: openmp𝑡 ≥ omp useful𝑡 is always true!

Extensibility Ignoring the thread behavior at process level allows themodel to be easily extended
to include other paradigms than OpenMP (e.g. accelerators) as well as long as suitable trace data
exists. We could think in terms of CUDA instead of OpenMP or even the hybrid combination of
MPI+OpenMP+CUDA.However, including a paradigm for accelerators first requires to identify the
concepts that are special for accelerator programming and the inefficiencies that may be introduced
by them. If inefficiencies are identified they have to bemodeled by defining corresponding formulas.
These formulas can then be added to the metric hierarchy shown in Figure 2 as a third subtree of
Parallel Inefficiency next to Process- and Thread Inefficiency.

2.1.3 Multiplicative hybrid metrics

Themultiplicativemodel assumes that the efficiencymetrics computed forMPI are, in fact, applica-
ble to any parallel programming model, i.e., that parallel efficiency, communication efficiency, and
global load balance are intrinsic to any parallel paradigm, with different interpretations depending
on the specific programming model they refer to. Following the spirit of the initial model, the first
step of the multiplicative model is to compute the metrics at the hybrid level. Those are computed
like in the original model with MPI. For a hybrid code, the parallel efficiency is the average time
outside both parallel runtimes MPI and OpenMP, the communication efficiency is the maximum

Figure 3: Blaming inefficiencies according to hybrid additive metrics highlighted in a trace. The
calculated inefficiencies give the percentage of each color in the trace.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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MPI comm
process LB
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percentage of time outside the parallel runtimes, and global load balance at the hybrid level is com-
puted as the ratio of the two previous metrics.

Hybrid Parallel efficiency = total useful
𝑇 ⋅ runtime =

𝑎𝑣𝑔(useful)
𝑟𝑢𝑛𝑡𝑖𝑚𝑒 =

∑𝑃
𝑖=1

∑𝑡
𝑗=1 𝑢𝑠𝑒𝑓𝑢𝑙𝑖,𝑗
𝑃 ⋅ 𝑡 ⋅ 𝑅

Hybrid Communication Efficiency = 𝑚𝑎𝑥(useful)
runtime

Hybrid Load Balance =
Parallel efficiency

Communication Efficiency =
𝑎𝑣𝑔(useful)
𝑚𝑎𝑥(useful)

Starting from these metrics, the approach targets to determine the contribution of each pro-
gramming model to these three efficiencies. The next figure describes the hierarchy of the hybrid
model with the multiplicative approach.

Figure 4: Hierarchy of multiplicative hybrid metrics
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The three-level hierarchy can be traversed through twoorthogonal paths: first, the programming
model, then the components of the parallel efficiency or vice-versa. As a difference with the pre-
vious model, the same efficiency factors are computed for the hybrid level and each programming
model. Being the same metrics allows us to apply the same model to other hybrid parallelizations
like MPI+CUDA without any modification except in the interpretation of the insight provided by
the results.

The approach first isolates the MPI contribution as in many cases hybrid codes also follow a
hierarchical parallelization whereMPI is themost external programmingmodel.MPI efficiencies
are determined considering only the processes or threads that call toMPI and considering that from
theMPI point of view, theOpenMPparallel runtime is useful computation. Considering a simplified
case where only the master threads call to MPI, the formulas are:
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MPI Parallel efficiency =
total time outside MPI for all MPI processes

𝑃 ⋅ 𝑅

=

∑𝑃
(𝑖=1) 𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑀𝑃𝐼𝑖,1

𝑃 ⋅ 𝑅

MPI Communication efficiency =
max(time outside MPI for MPI processes)

runtime

=
𝑚𝑎𝑥({𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑀𝑃𝐼1,1, .., 𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑀𝑃𝐼𝑃,1})

𝑅

MPI Load Balance =
Parallel efficiency

Communication Efficiency

=

∑𝑃
(𝑖=1) 𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑀𝑃𝐼𝑖,1

𝑃
𝑚𝑎𝑥({𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑀𝑃𝐼1,1, .., 𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑀𝑃𝐼𝑃,1})

For codeswith non-hierarchical communication themodel has been appliedmanually but the adap-
tion of the formulation is work in progress.

For the MPI processes, it is possible to split the MPI Communication efficiency between Serial-
ization and Transfer using the Dimemas simulator.

MPI Serialization efficiency =
𝑚𝑎𝑥({𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑀𝑃𝐼1,1, .., 𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑀𝑃𝐼𝑃,1})

𝑅𝑖𝑑𝑒𝑎𝑙

MPI Transfer efficiency =
MPI Communication efficiency

Serialization efficiency

Finally,OpenMP efficiencies (and in general any other programming model that is combined
withMPI) are computed to blame any loose of efficiency that cannot be justified by theMPI activity:

OpenMP Parallel efficiency =
Hybrid Parallel efficiency
MPI Parallel efficiency

OpenMP Communication efficiency =
Hybrid Communication efficiency
MPI Communication efficiency

OpenMP Load Balance =
Hybrid Load Balance
MPI Load Balance

Isolating first theMPI component implies that any time spent inMPI is blamed toMPI, although
the source for it may be in OpenMP. For example, if an OpenMP loop in one of the MPI ranks is
highly unbalanced causing a delay to reach the MPI synchronization, the model would report there
is a problem with MPI indicating it is possible to improve the application not only modifying the
OpenMP unbalance, but also modifying the MPI synchronization. In fact, it is the same effect we
have when splitting the Communication efficiency between Serialization and Transfer. The simu-
lation will blame any improvement that can be obtained, improving the network, to Transfer.

The concepts may be more directly related to the MPI paradigm, although it is essential to re-
mark that MPI load balance efficiency is obtained computing the load balance for the whole execu-
tion. Temporal unbalance is reported as serialization. As a difference with the additive model, MPI

13
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load balance is computed as in the original MPI model with the ratio between the average and the
maximum percentages, not as the average rated by the execution runtime.

In the multiplicative model, the OpenMP load balance efficiency reports the balance at a global
level, making no difference if it is caused by unbalance on some of the OpenMP loops or due to
serial regions not parallelized with OpenMP. The OpenMP Communication efficiency groups both
temporal unbalance that is compensated along time as well as synchronization time due to barriers
or overhead of the OpenMP library due, for instance, to a very low grain scheduling.

2.1.4 Critical path-based hybrid metrics

The general concept of the critical path-based hybrid metrics is to break down the global parallel
efficiency metric into submetrics for each level of parallelism. In the following, we focus on the
combination of MPI and OpenMP. The hierarchy of efficiency metrics is shown in Figure 5. The
same concepts would also apply to combinations of MPI and CUDA or the combination of more
parallel programming paradigms but will require additional formulations of submetrics for the cor-
responding paradigm. The definition of the critical path-based metrics will be based on an implicit
representation of the critical path.

Figure 5: Hierarchy of critical-path based hybrid metrics
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Critical path In literature the critical path is commonly understood as the event path with the
longest duration in the execution history of a program. For our purpose we want to use the term
critical path in a broader sense, in that we define the critical path for the execution graph of an
actually observed execution of the application. The edges in the execution graph represent:

a) thread-level synchronization (e.g., from OpenMP)

b) process-level synchronization (e.g., from MPI communication) or

c) sequential execution within a process unit (e.g., executing application- or parallel runtime
code).

Such execution graph is always directed and acyclic. The critical path between two connected nodes
in a directed acyclic graph is the path with the highest sum of weights on the edges of the path.
Based on this definition, we can define various critical paths through an execution graph by carefully
selecting the weights for the edges.
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First, wewant to consider only the cost of useful execution and ignore all time in parallel runtime
libraries. The resulting critical path of useful execution (CUE) follows all dependencies caused by
synchronization but neglects the cost of communication and synchronization.

Similarly, we can define graphs, where only time in the MPI or time in the OpenMP runtime
library is ignored. The critical path of outside MPI time (COM) has zero weights for time spent in
the MPI runtime. The critical path of outside OpenMP time (COO) has zero weights for time spent
in the OpenMP runtime.

In the following, we will not only consider the global execution graph (G-), but also process-
local execution graphs (PL-) limited to the specific process and ignoring synchronization with other
processes. For symmetry, we also consider thread-local execution (TL-) as a special case that ignores
all synchronization with other execution units.

Definition of separated hybrid metrics In the following, 𝑡𝑖 indicates TL-CUE on thread 𝑖 ∈ 𝑇
with 𝑇 the set of all threads in the execution. 𝑃𝑇𝑖 ⊂ 𝑇 contains all threads of process 𝑖 ∈ 𝑃 with 𝑃
being the set of all processes in the execution.

For load balance, we can calculate the threading load balance for each process and then take the
weighted average across all processes. Theweighted average of process-local averages in the numer-
ator of the LB formula is equal to the global average across all threads. Under this consideration,
we can split the global load balance into these two factors:

𝐿𝐵𝑜𝑚𝑝 =
|𝑇| ⋅ avg(𝑡𝑖∈𝑇)∑

𝑗∈𝑃
(|𝑃𝑇𝑗| ⋅max(𝑡𝑘∈𝑃𝑇𝑗 ))

and 𝐿𝐵𝑚𝑝𝑖 =

∑
𝑗∈𝑃

(|𝑃𝑇𝑗| ⋅max(𝑡𝑘∈𝑃𝑇𝑗 ))

|𝑇| ⋅max(𝑡𝑖∈𝑇)
(1)

For serialization efficiency, the question is what would be the maximum runtime of the different
MPI processes, if MPI data transfers took no time. At the same time, this value should indicate the
ideal process-local runtime of all processes. Based on this consideration, we can use PL-CUE to
split the global serialization efficiency into two factors:

𝑆𝑒𝑟𝐸𝑜𝑚𝑝 =
max(𝑡𝑖∈𝑇)

max(𝑃𝐿-𝐶𝑈𝐸𝑗∈𝑃)
and 𝑆𝑒𝑟𝐸𝑚𝑝𝑖 =

max(𝑃𝐿-𝐶𝑈𝐸𝑗∈𝑃)
𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝑖𝑑𝑒𝑎𝑙

(2)

G-COO contains all potential waiting time for MPI communication, and all synchronization, while
OpenMP synchronization cost is dropped. Therefore, we can use this metric to split the transfer
efficiency into the following two factors:

𝑇𝐸𝑜𝑚𝑝 =
𝐺-𝐶𝑂𝑂
𝑟𝑢𝑛𝑡𝑖𝑚𝑒 and 𝑇𝐸𝑚𝑝𝑖 =

𝐺-𝐶𝑈𝐸
𝐺-𝐶𝑂𝑂 (3)

Properties of separated hybridmetrics Wewant to highlight that all of our critical path-based
hybrid metrics are values from 0 to 1, similiar to all other hybrid metrics presented in this section.
In order to prove this claim, we first note that all values 𝑡𝑖∈𝑇 = TL-CUE on thread 𝑖 ∈ 𝑇, PL-CUE,
G-COO, and G-CUE represent time on different critical paths of the execution. As such, they are
always non-negative (zero or larger) since execution can only evolve forward in time. The same
holds for 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 and 𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝑖𝑑𝑒𝑎𝑙 of course. In the split of global load balance (1), we sum over
products of TL-CUE either with |𝑇|, the number of all threads in the execution, or with |𝑃𝑇𝑖|, the
number of threads of a process 𝑖. Since both thread counts cannot be negative, the resulting products
will always be non-negative. Note that the average or maximum of a set of non-negative times is
trivially also non-negative. As all factors in the split of global serialization efficiency (2) and transfer
efficiency (3) are simply quotients of non-negative times they are also non-negative.
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To further prove that all of our critical path-based hybrid metrics cannot be larger than 1.0, we
have to show that for each quotient, the numerator is less than or equal to the denominator.
For 𝑇𝐸𝑜𝑚𝑝 we know that G-COO is the time on the global critical path only considering useful
execution andMPI execution. In contrast, 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 is the time on the critical path additionally con-
sidering OpenMP execution. Thus we have G-COO ≤ 𝑟𝑢𝑛𝑡𝑖𝑚𝑒.
Similarly, for 𝑇𝐸𝑚𝑝𝑖 the G-CUE is time on the critical path only considering useful execution while
G-COO is time on the critical path considering useful execution and MPI execution. Again we get
G-CUE ≤ G-COO.
For 𝑆𝑒𝑟𝐸𝑚𝑝𝑖 assume 𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝑖𝑑𝑒𝑎𝑙 < 𝑚𝑎𝑥(PL-CUE𝑗∈𝑃). This means there exists a process 𝑗 ∈ 𝑃 that
needs more time to perform its useful execution than given by 𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝑖𝑑𝑒𝑎𝑙. By definition of ideal
runtime, this cannot be as each process has to be finishedwith useful execution before the execution
of the whole application can end. So by contradiction we get𝑚𝑎𝑥(PL-CUE𝑗∈𝑃) ≤ 𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝑖𝑑𝑒𝑎𝑙.
For 𝑆𝑒𝑟𝐸𝑜𝑚𝑝 we can argue analogously assuming𝑚𝑎𝑥(PL-CUE𝑗∈𝑃) < 𝑚𝑎𝑥(𝑡𝑖∈𝑇). Thismeans there
exists at least one thread that spendsmore time on useful execution than any of the processes. How-
ever, this is not possible as each thread cannot spend more time on useful execution than the corre-
sponding process it belongs to. So by contradiction we get𝑚𝑎𝑥(𝑡𝑖∈𝑇) ≤ 𝑚𝑎𝑥(PL-CUE𝑗∈𝑃).
For 𝐿𝐵𝑜𝑚𝑝 we can argue by definition of the average

|𝑇| ⋅ 𝑎𝑣𝑔(𝑡𝑖∈𝑇) =
∑

𝑖∈𝑇
𝑡𝑖 =

∑

𝑗∈𝑃

⎛
⎜
⎝

∑

𝑘∈𝑃𝑇𝑗

𝑡𝑘
⎞
⎟
⎠
≤
∑

𝑗∈𝑃

(
|𝑃𝑇𝑗| ⋅max(𝑡𝑘∈𝑃𝑇𝑗 )

)
.

For 𝐿𝐵𝑚𝑝𝑖 we can argue that we have

for each 𝑗 ∈ 𝑃 ∶ max(𝑡𝑘∈𝑃𝑇𝑗 ) ≤ max(𝑡𝑖∈𝑇𝑖 )

and thus also
∑

𝑗∈𝑃

(
|𝑃𝑇𝑗| ⋅max(𝑡𝑘∈𝑃𝑇𝑗 )

)
≤
∑

𝑗∈𝑃

(
|𝑃𝑇𝑗| ⋅max(𝑡𝑖∈𝑇)

)
= |𝑇| ⋅max(𝑡𝑖∈𝑇).

2.1.5 Comparison of the different hybrid metrics

We want to briefly compare our proposed hybrid metrics by highlighting strengths and weaknesses
of the different models. First of all, a big disadvantage of having multiple hybrid efficiency models
is the difficulty to properly summarize all the metric data that was collected and analyzed during
the lifetime of the project. With the original metric set it is easily possible to compare multiple
applications based on their obtained efficiencies. For the hybrid metrics only the top level metrics
may be directly compared to each other.

The process efficiency and thread efficiency in the additive hybridmodelmay be compared toMPI
parallel efficiency and OpenMP parallel efficiency in the multiplicative model. But further down the
metric hierarchy on the thread level the OpenMP load balance in the multiplicative model cannot
clearly be related to either Amdahl efficiency or OpenMP region efficiency in the additive model be-
cause the effects related to both of thementioned additivemetrics are captured by themultiplicative
OpenMP load balance.

However, there are also important strengths of the proposed hybrid models that justify the co-
existence of both the additive and the multiplicative models. While we focus to demonstrate the
hybrid models by the example of MPI+OpenMP applications we want to stress that all of the mod-
els support other combinations of programming paradigms, e.g., MPI+CUDA, as well. The strength
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of the multiplicative model is that it naturally supports any combination of MPI+X, where X may
be any kind of threading or accelerator programming paradigm. The additive hybrid model as well
as the critical path-based model will need to explicitly reformulate the OpenMP related metrics to
be applied to CUDA, for example.

Moreover, the definition of the critical path-based hybrid metrics using the implicit critical path
allows to calculate themetrics in an online fashion during programexecution. Since the critical path
only needs to be determined implicitly during runtime a performance analysis tool implementing
this approach only needs to collect a neligable amount of timers. No trace of the whole application
run needs to be tracked and stored such that the runtime overhead introduced by this approach is
also neligable. This is a very important feature in order to avoid distortion of the original program
behavior by the analysis tool.

While the multiplicative hybrid model might be the easiest to be applied to a multitude of dif-
ferent programming paradigms combined withMPI, it only offers a global view on the performance
of a hybrid program execution. In most cases this is enough to already indicate from which part
of the hybrid programming model inefficiencies arise. For a deeper analysis the additive hybrid
model might reveal the root cause of inefficiencies more easily. On the OpenMP level, for example,
the initial multiplicative model may reveal that there is a load imbalance among all the threads.
In contrast the additive model easily allows to split the inefficiency coming from load imbalance
into individual contributions from each OpenMP region. This way both the POP analyst as well as
the customer know on which part of the application code the analysis can be focused. The critical
path-based hybrid metrics might also provide more insight compared to the multiplicative model
because it additionally enables the split of communication efficiency into serialization- and transfer
efficiency for each programming model individually.

Lastly, we want to give some guidelines on choosing the most appropriate model. To get a
first overview of the efficiency of a hybrid parallel application all three models can be used equally
good. The only exception here are hybrid applications using other combinations of programming
paradigms than MPI+OpenMP. In the current state at the end of the project only the multiplicative
hybridmetrics support such cases per default. If inefficiencies are identified to arise from the thread
level we recommend to use the additive hybrid metrics because being able to break down the ineffi-
ciencies for each parallel region easily identifies the inefficient regions of the code. If the hybrid
application implements a non-hierarchical MPI communication scheme such as MPI_THREAD_-
MULTIPLE or heavily makes use of OpenMP tasks with task dependencies the critical path-based
metrics should be used as they can break down the communication efficiency into serialization and
transfer efficiency separately for each programming model.

2.2 I/O metrics

The advent of big data and machine learning has increased the importance of efficient I/O perfor-
mance inside applications. Currently, the application’s I/O performance is addressed in the special
section of the POP assessment only when it is already clear that the I/O part of the application is the
main factor for the inefficiencies. Therefore, a quantitative way to show the I/O impact is needed
as part of the POP metrics. We used as a starting point the work done under the DEEP-ER project1,
where the I/O efficiency was computed considering its weight with respect to the computations.
While the details of how to integrate file I/O into POP metrics are still under consideration, we
present the first concepts derived from the discussion in the following.

1https://www.deep-projects.eu/images/materials/DEEP-ER_D72_Report_on_projections_and_

improvements_for_the_DEEP_DEEPER_concept_v20-ECapproved-.pdf
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File I/O Efficiency. A quantitative definition of File I/O efficiency might look like:

File I/O Efficiency =
𝑎𝑣𝑔(useful comp. time)

𝑎𝑣𝑔(useful comp. time + file I/O time)

This assumes that we do not account for File I/O to be useful computation time. As an alternative,
if we account File I/O to be useful computation time, we could also write the same term as:

File I/O Efficiency =
𝑎𝑣𝑔(useful comp. time − file I/O time)

𝑎𝑣𝑔(useful comp. time)

Integration in POP metrics. We can find arguments for two different ways to integrate File
I/O into the tree of POP metrics. It is arguable whether File I/O is a characteristic of a parallel
application, or whether it is a separate performance problem and should not be mixed with parallel
performance.

In the first version, shown inFigure 6, we introduce File I/O as a submetric of Parallel Efficiency.
An argument for this view is that File I/O in a parallel application influences the parallel behavior
of the application. As an example, sequential output by a root rank can lead to a load imbalance
solely caused by the I/O. With a better I/O system or by turning off the logging, the load balance
could be improved. The resulting tree of metrics is visualized Figure 6.

Figure 6: I/O as a sub metric of Parallel Efficiency
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An alternative, shown in Figure 7, is to interpret I/O efficiency as a global characteristic of the
application. This view highlights the independence of the parallel execution from the influence of
the I/O behavior of the application. The resulting tree of metrics is visualized Figure 7.
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Figure 7: I/O as a sub metric of Global Efficiency
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2.3 Vectorization metrics
Vectorization is one of the most powerful levers when considering performance optimization at the
core level. Modern processors like Intel Xeon Skylake and next-generationARM-based Fujitsu cores
(SVE extension) feature 512 bits wide FPUs. Enabling vectorization can lead up to a 16x speedup
when dealing with single (32bit) floating-point values and 8x with double (64bit) ones. That is why
assessing vectorization efficiency is very important.

Vectorization metrics are usually computed at the loop level and, to a lesser extent, at function
level when loops are inlined in small functions (C++ like behavior). It is still possible to build a
global metric at the program level in order to provide a rough idea of the global behavior. Such
global vectorization efficiency can be part of the computation efficiency.

As a complement we also compute a vectorization intensity metric to get an idea of how much
instructions are actually vectorized.

Vectorization efficiency would be "How well is the code vectorized" and vectorization intensity
"How much". For instance, if vectorization efficiency is 100% but only corresponds to 5% of total
execution time, the information is meaningful.

We also introduced an OPC (Operations Per Cycle) metric that better reflects the vectorization
efficiency when compared to IPC. Basically, for a given basic block if instructions, OPC = IPC * OPI
(where OPI is Operations Per Instructions). It is not specific to vectorization but on x64 platforms
it’s clearly vectorization that provides data level parallelism. Whether we consider it at global or
local level it permits getting a quick insight at the instruction level when it comes to vectorization
efficiency. For example the CS3D code (cf. POP2_AR_077) heavily uses MKL. On 200 cores it has
an average IPC of 1.12 while OPC is 5.77. The problem is not IPC, it is just that it is not meant
to reflect operation (what users think about) but the number of instructions executed (including
multi-operation instructions like vector ones).

Assessing vectorization requires detecting vector instructions. Vector instructions are character-
ized by their precision (single or double), their level of parallelism (scalar, i.e., one value, or packed
, i.e., multiple values in a vector) and their width (e.g., 512bits).

The most common metric is the vectorization ratio. For each data precision (single/double) the
amount of packed instructions over all vector instructions is computed (packed / (scalar + packed)).
The goal is to estimate the number of packed instructions. This definition is used, for instance,
in compilers. Typically, when a compiler states ”loop fully vectorized“, that does not mean it is
exploiting the full architecture’s vector width, but the considered instruction set. For instance, if
the compiler is using AVX2 instructions on an AVX512 capable chip, then the loop would be fully
vectorized but only using half of the actual vector’s length. That is why we have to introduce vector
width utilization. We call this metric vectorization efficiency.

Technically, there are two ways to deal with vector instructions. On the one hand, hardware
counters can be used to count the number of arithmetic floating-point (FP) operations (single/dou-
ble and scalar/packed for 32/64/128/256/512 operands). The two main limitations of this approach
are:

• FP countersmaynot be available (dependent onprocessors/architectures/microarchitectures);

• it requires using eight counters, which usually requires an additional run if other counters
need to be collected and also using multiplexing (more events than hardware slots)

On the other hand, it is possible to use tools like MAQAO 2 or Intel Advisor 3 implementing a static
analysis (disassembling the application’s binary). Using static analysis additionally provides loop

2https://www.maqao.org/
3https://software.intel.com/en-us/advisor
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level granularity, integer vector operations detection, and also checking vector efficiency of vector
memory operations, which cannot always be counted by hardware counters (as vector instruction).

We will first start by the method that can be implemented by any POP partner developing tools,
that is to say the hardware counters approach.

For a typical x86 architecture with 512-bit vector registers, the definition of vectorization effi-
ciency would be:

Veff =
100 ∗ (32 ∗ SS + 64 ∗ SD + 128 ∗ (PS128 + PD128) + 256 ∗ (PS256 + PD256) +

512 ∗ (PS512 + PD512))

512 ∗ total FP operations

SS = Scalar single-precision FP
SD = Scalar double-precision FP
PS = Packed single-precision FP
PD = Packed double-precision FP
For instance, PS128 means 128-bit packed single-precision FP instruction (4 * 32)

Every vector instruction is weighted (i.e., contribution) by its length in bits (numerator). Then,
all instructions’ contributions are compared to the peak vector performance (denominator).

Implementing this formula using hardware counters depends on the availability of these coun-
ters. Considering Intel products, the required counters are available starting from Skylake Xeon
(Server) processors (were stopped since Nehalem).

The other method consists in mixing dynamic and static analysis (MAQAO 4 LProf + CQA).
While providing the same feature, this method has the following advantages :

• avoids collecting vector events

• track memory operations while hardware counter tracks only vector FP operations

• works with in the case of AMD which counters implementation does not provided the vector
width

• supports codes with integer vector operations which are not tracked by hardware counters

Similar to the I/O metrics, these considerations on vector metrics are currently in a draft state.
Regarding the integration into the POPmetric hierarchy, the vectorization will go into computation
efficiency, as this is a characteristic that also applies to the serial execution.

2.4 Extensions used in practice
Our proposed extensions to the methodology have been used in the performance assessments from
workpackage 5. Here we want to show the usefulness of our extensions in practice by highlighting
some interesting performance assessments, where our metric extensions clearly helped to identify
significant performance issues in hybrid application codes.

Multiplicative hybrid metrics on TsunamiHySEA
In the first assessment of the hybrid MPI+CUDA TsunamiHySEA (cf. POP2_AR_003) code hybrid
metrics were not defined yet. In order to determine whether inefficiencies are caused by the MPI
or the CUDA component the contribution of the MPI component to the global efficiency of the code
was determined with the original POP MPI metrics and the remaining inefficiency was blamed to
the CUDA component. The result of this breakdown is shown in Figure 8.

4https://www.maqao.org/
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Figure 8: Breakdown of global efficiency (y-axis) for TsunamiHySEA (1st assessment, 1 MPI rank
per GPU (x-axis)

For each run the code was executed with 1 GPU per MPI rank. One can recognize that the MPI
parallel efficiency (red line) stays rather constant while the parallel efficiency considering bothMPI
and CUDA (blue line) decreases significantly with scale. Further analysis revealed that the scaling
of the CUDA parallelization is limited because the overhead of memory copies and kernel launches
increases at scale. On the MPI level this manifests as waiting time in an MPI_Allreduce operation
due to the memory copies from the devices not being finished.

In fact this assessment motivated the development of the multiplicative hybrid metrics in order
to verify that the performance issues are related to the CUDA parallelization. A second assessment
was performed onTsunamiHySEA (cf. POP2_AR_085)with the same input data and the samehard-
ware but with some code modifications by the developer based on the findings of the first assess-
ment. The breakdown of the global efficiency based on the multiplicative hybrid metrics obtained
in this audit is shown in Figure 9.

Figure 9: Breakdown of global efficiency (y-axis) for TsunamiHySEA (2nd assessment), 1 MPI rank
per GPU (x-axis)

In this case both the MPI parallel efficiency (green line) as well as the hybrid parallel efficiency
(yellow line) decrease significantly with scale. However, it is noticeable that the CUDA component
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contributes more to the loss of efficiency than the MPI component. This points further analysis to
investigate the CUDA level.

Further analysis revealed that point to point communication are now overlapped with CUDA
kernels but still the same waiting time in the MPI_Allreduce operation occurs similar to the first
audit of this code. The code developers removed this Allreduce operation and the prior delay after
the execution of the CUDA kernels has disappeared.

So in this case themultiplicative hybridmetrics clearly helped the code developers to understand
that there is a problem related to their CUDAparallelization, which could then be solved afterwards.

Additive hybrid metrics on JuKKR

For the analysis of the hybrid MPI+OpenMP application JuKKR (cf. POP_AR_079) we applied the
additive hybrid metrics. The results are shown in Figure 10.

Figure 10: Additive hybrid metrics for JuKKR (16 MPI ranks, varying OpenMP threads)

The additive hybrid metrics clearly show that there is no issue on the process level as most
efficiencies are nearly optimal. However, on the thread level we recognize a significant decrease of
the Serial Region Efficiency when the number of OpenMP threads used per MPI rank is increased.
This child-metric tells us that there is a significant amount of the code that only runs in serial on
each MPI rank but does not exploit the OpenMP parallelism.

After closer investigation we indeed found an inefficient parallelization using the threaded ver-
sion of the Intel Math Kernel Library (MKL) in one of the hotspots of the application. We addressed
this issue in a proof of concept (cf. POP2_POCR_026). We moved the thread parallelism out of the
Intel MKL and implemented OpenMP parallelism on a higher level in the call-tree of this hotspot
region. Our optimization yielded a speedup of roughly 6x in this proof of concept study.
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Vectorization metrics on DISCO
As part of the performance assessment for the Disco code (cf. POP2_AR_123) the vectorization has
been investigated. The results are shown in Figure 11.

Figure 11: Vectorization metrics for the Disco application

Our vectorizationmetrics indicate that the codemostly performs double precision floating-point
operations. Only 48% of those are vectorized using SSE (128 bit) instructions while the remaining
52% are scalar instructions. Here the vectorization metrics clearly indicate that there is huge poten-
tial to optimize the application by further vectorization of the code.

This has been done in a proof of concept (cf. POP2_POCR_021) activity. Several functions of
the code have been identified which are suitable for further vectorization. By changing the order of
three nested loops and also modifying the layout of the corresponding data structures used in these
loops the execution time of these function was reduced by 70%.
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3 Improvements made to the tools

Since the first phase of the POP CoE, the extensive use of performance tools from BSC and JSC in a
wide range of parallel application execution assessment services undertaken by POP partners iden-
tified limitations and unexpected behavior that were important to address. Valuable feedback from
POP partners also identified new functionalities to facilitate expanding and improving the delivery
of POP services. In this context, additional tools available from UVSQ and RWTH providing com-
plementary capabilities have also been included, alongwith a new reporting tool being developed by
NAG. Our proposals to extend the POP metrics for hybrid use-cases, vectorization and file I/O also
necessitated important development efforts in order to make these extensions usable in practice.

This section details all improvements made to tools related to POP services over the whole
project period of POP2. We also briefly give an outlook on current work in progress.

3.1 Correctness Tools
The tools Archer and MUST are runtime correctness analysis tools, which observe the execution of
a parallel program to detect erroneous behavior. The focus of Archer is multi-threaded applications,
while the focus ofMUST isMPI parallel applications. Current efforts target integrating the two tools
to allow for analysis of hybrid MPI+OpenMP applications.

3.1.1 Archer

The Archer tool is used to detect data races in OpenMP applications. It builds on ThreadSanitizer in
LLVM as the analysis back-end and provides OpenMP specific synchronization information. This
results in improved analysis results, as most false alerts can be avoided.

Archer has been successfully up-streamed into the LLVMproject. With the release of LLVM10.0
inMarch 2020, Archer gets distributed to supported platformswhen the latest clang is installedwith
OpenMP support. Moreover, an issue regarding data dependencies for OpenMP tasks was identified
because these dependencies were synchronized globally. Efforts were made to improve the Archer
tool such that it correctly synchronize task dependencies only for sibling tasks.

3.1.2 MUST

The MPI runtime correctness tool MUST is used to detect errors in the use of the MPI interface.
The tool observes the MPI function calls and provides analysis based on the provided function ar-
guments, but also the sequence of MPI function calls. The performed analyses range from interval
checks of provided integer arguments to deadlock detection in the MPI communication pattern.

AsMUST is applied inmore andmore POP assessments, we identify a lack in support for specific
functions introduced inMPI-3. If such unhandledMPI functionswould provide crucial information
for subsequent correctness analysis, like constructors for MPI opaque handles, we cannot apply
MUST analysis for code using those functions. In this case, essential support for the identified MPI
function gets implemented while moving forward with the POP assessment.

The 1.6 release of MUST includes increased coverage of MPI-3 features, but also provides basic
thread-safety for the analysis of multi-threaded MPI applications. Moreover, configuring MUST
with stack trace support, which helps MUST to generate more detailed and meaninful reports, has
been simplified by providing an alternative stack trace implementation based on backward-cpp.
Previously, installation of external software was required to enable stack trace support.

Release 1.8 further extends support for multi-threaded MPI applications with the integration
of ThreadSanitizer into MUST to enable data race detection. Since only GNU- and LLVM-based

25



D8.2 - Final report on methodology development and tool improvement
Version [1.0]

compilers provide ThreadSanitizer instrumentation, such analysis is limited to applications com-
piled with either of those compilers. In addition, the type and memory allocation tracker TypeART
has been integrated into MUST to improve the detection of local type mis-matches in MPI function
calls. Other new features of MUST added in release 1.8 improve its usability by allowing users to
filterMUST’s output and an option to specify the output directory. Anothermilestone for release 1.8
was setting up continuous integration in order to deliver more robust releases and enhanceMUST’s
compatibility with different MPI implementations and versions.

Work is in progress to integrate Archer and MUST analysis, to advance the detection of multi-
threading issues in MPI applications. Current efforts also revolves around further extending the
initial continuous integration for MUST.

3.2 Score-P-based tools
The Score-P instrumentation andmeasurement infrastructure generates runtime summary profiles
(in CUBE format) and/or event traces (in OTF2 format) for parallel executions. Event traces can
be interactively examined with trace visualization tools such as Vampir and automatically analyzed
for execution inefficiencies with the Scalasca Trace Tools, which produce augmented (CUBE for-
mat) profiles containing additional metrics. CUBE tools are employed to post-process profiles, in
particular, to derive additional metrics and construct a metric hierarchy. A CUBE GUI facilitates
interactive exploration.

Within this POP2 work package, most effort focused on improving the use of the Scalasca nexus
and CUBE GUI to facilitate assessments, along with targeted developments to Score-P driven by
particular assessment issues. Scalasca and Score-P also benefited from contributions from other
projects and partners from their developer communities.

3.2.1 Scalasca

The nexus provided by the Scalasca Trace Tools toolset for combined measurement collection and
analysis of an application execution (SCAN) was extended to support sets of measurements. This
multi-run capability can automate the generation of multiple measurements with varying applica-
tion execution and measurement configuration settings. One usage supports measurements with
different sets of hardware counters, specifically to address the limited numbers and combinations
of counters, which can be recorded simultaneously in a single measurement. Various preset con-
figurations are provided, including one specifically for POP standard assessments. Additionally,
the SQUARE analysis report explorer was extended to post-process and integrate multi-run sets of
experiments into an aggregate analysis report. Report post-processing has also been extended to
construct metric hierarchies for CUDA, OpenCL and OpenACC overheads.

Work in progress will allow automated analysis of traces containing events for non-CPU loca-
tions, such as those used for GPU metrics and process memory.

3.2.2 Score-P

Several POP2 performance assessments have been applications employing C++ standard threads,
which are POSIX threads originating from the C++ runtime library. Events from these threads
(and others where the point of creation is not instrumented) are now handled and presented for
(parent-less) orphan thread locations. While OpenMP has been the predominant threading model
for assessed applications, a number of applications combine use of OpenMP with other threading
models (typically C++ standard or POSIX threads) and these combinations are not yet supported
by Score-P, restricting analysis to one model only.
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Support for MPI measurement was extended to include recording RMA/one-sided communi-
cation events of MPI-3. Cartesian topologies from MPI communicators along with hardware and
user-defined topologies are also recorded to support additional analysis presentation. Receives of
messages matched byMPI probe routines (MPI_Imrecv and MPI_Mrecv) as used by Python/mpi4py
applications in POP assessments have been added. Bytes read or written by MPI file I/O routines
are included along with newly added POSIX file I/O events to support file I/O assessments. Work is
underway to support the Fortran2008MPI library interfacemodule (mpi_f08) andmake the Score-P
MPI adapter thread-safe to be able to support the MPI_THREAD_MULTIPLE model where multi-
ple threads of a process concurrently use MPI calls. Additionally, work is in progress to support
inter-communicator events used by multi-executable (MPMD) applications, implement missing
events/attributes such as those for MPI_Comm_create, MPI_Alltoallv and MPI_Alltoallw and re-
lations, and incorporate aggregation/filtering of uncompleted MPI_Iprobe, MPI_Test and related
test events.

Support has been added to support measurement on AMD Epyc processors, and work is in
progress to support AMD GPUs and ARM A64FX systems (with their associated compilers and
libraries), and to support OMPT events from OpenMP runtime systems.

Support for many of the compilers typically used on HPC computer systems has been improved
to be able to instrument applications more reliably. This includes entirely new interfaces such as
Kokkos, and the new version of the OpenCL interface.

Intel compiler instrumentation can now be controlled via a specification file (as previously for
GCC compilers). The utility for scoring measurement based on their analysis report content has
been extended with additional sorting modes and the ability to automatically generate a filter file
which can be customized and used for subsequent instrumentation or measurements.

Identification of GPU devices is being improved, race conditions removed from the GPU event
handlers, and avoid conflicts with NVTX region annotations. Wrapping of external libraries to cap-
ture their API events is being made more convenient.

3.2.3 Cube

A key development for POP has been the incorporation of POP efficiency metrics, derived from
the metrics contained in Scalasca and Score-P analysis reports, leading to the GUI Advisor plug-in
presentation of the set ofmetrics associatedwith a selected call-path (or set of call-paths) as shown in
Figure 12. This facilitates determination, exploration, and extraction of the POP efficiency metrics
for a known or prospective assessment focus of analysis (FoA).Work is in progress to extract derived
POP efficiency metrics for a specified callpath from one or a set of analysis reports via a command-
line utility to enable automation of this currently interactive multi-step procedure.

Figure 13 shows variants of POP efficiency metric derivations for hybrid MPI+OpenMP anal-
ysis provided by different Advisor modes. Work in progress is extending these derivations for hy-
brid CPU+GPU analysis (such as MPI+CUDA), and more general combinations of parallelization
paradigms (e.g. MPI+OpenMP+CUDA), and automated use of the appropriate Advisormode based
on analysis content.

Clockrate and computation granularity metrics, as well as prototype File I/O and Vectorization
efficiencies, are implemented as derived metrics for evaluation, as shown in Figure 14, providing
metric values for individual call-paths and processes/threads. These standard assessment metrics
are expected to be incorporated in the Advisor panel presentation in due course.

While MPI File I/O is automatically collected and analysed, POSIX File I/O requires special ad-
ditional instrumentation and measurement and is therefore often missing (particularly for codes
written in Fortran). Derivations such as those shown for Vectorization rely on processor-specific
hardware counters, that may not be available/complete on each computer system or require multi-
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Figure 12: Advisor panelwithinCUBEGUI showing assessment of parallel efficiency and associated
computation metrics for selected callpath from combined trace and summary measurements. For
this MPI application execution callpath communication efficiency is perfect, but IPC instruction
intensity is poor.

ple measurements, therefore generalising this mechanism is work in progress.
Additionally, the GUI now supports bookmarking to store and return to notes made during

analysis exploration, and the underlying library is being hardened to support the asynchronous
calculation of metric values for improved reliability and responsiveness. The presentation of asyn-
chronously executed OpenMP tasks and kernels offloaded to GPUs has beenmademore consistent.
An additional display providing an overview of the contents of a summary or trace analysis report
has been prototyped for a future release.

3.3 Paraver-based tools
The BSC Performance Tools are extensively used in POP CoE. Some of the studies allow identifying
the need to extend the currently supported scenarios as well as detecting unexpected behavior. The
feedback from the POP partners is also very valuable to identify new functionalities or aspects that
can be improved. In this section, we detail the improvements made to the BSC Performance Tools,
including the current work in progress.

3.3.1 Extrae

Extrae is the instrumentation package for BSC Performance Tools, as such it concentrates most
of the effort to extend the support to programming models and architectures. With respect to the
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Figure 13: CUBE Advisor panels showing hybrid efficiency variants for a selected focus of analysis,
providing complementary perspectives of the same execution measurement. (left) Additive variant
highlights low Thread Efficiency originating from lowAmdahl Efficiency for code outside OpenMP
parallel regions executed serially by master threads of each process, with MPI Process Efficiency
considered to be good. OpenMP Load Balance Efficiency and Other OpenMP Inefficiency not yet
included. (right) Multiplicative variant highlights very poor MPI Load Balance, while OpenMP
Parallel Efficiency is perfect. MPI Serialization Efficiency and Transfer Efficiency not yet included.

architecures, the more relevant task within the scope of POP2 has been the porting of Extrae to the
CTE-ARM cluster at BSC.

To support the POP studies, we need to update and complement the support to the different pro-
gramming models that are instrumented. In that sense we extended the MPI calls intercepted by
Extrae to include MPI_Mprobe, MPI_Improbe, MPI_Mrecv, and MPI_Imrecv that are used in the
implementation of MPI4PY Python module. With respect to OpenMP, we added the instrumen-
tation of manual locks, revised the support for the task loop construct, and fixed the state of the
threads after a shutdown.

As bigger develoments for OpenMP support, we modified Extrae to represent OpenMP nested
parallelism delimiting the inner level as a "black box" that we would try to characterize in a future
refinement and we extended the Extrae Burst Mode to support OpenMP and MPI+OpenMP appli-
cations allowing to target such kind of applications at larger scales collecting summarized informa-
tion. This last development is currently limited to the GNU environment, but it will be extended
to Intel and OMPT in the near future. Figure 15 briefly compares the characterization provided
for the parallel functions in detailed mode versus burst mode with Lulesh MPI+OpenMP execu-
tion that obtains a reduction on the data colected close to two orders of magnitude. We have also
worked on updating the instrumentation of OpenMP runtime using OMPT (OpenMP Tools inter-
face) that enables better and more portable measurement of OpenMP codes but as we have faced
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Figure 14: CUBE GUI showing additional derived metrics including Clockrate, IPC and two vari-
ants of ComputationGranularity (distinguishingMPI collectives and allMPI operations), and (from
a differentmeasurement of the same code) hierarchies of Vectorization Efficiency andVectorization
Ratio metrics derived from counts of single- and double-precision floating-point arithmetic instruc-
tions on Intel ‘Skylake’ processors. IPC instruction intensity is poor for the selected callpath, though
one process has much better IPC than the others. Double-precision floating-point is hardly used,
whereas single-precision vectorization makes good use of 16-way AVX512 instructions. Routines
with high vectorization are found to have very low IPC, whereas those with no floating-point oper-
ations have close to perfect IPC of 4 for this processor.

some limitations of the current interface, it is not yet included in the public version.
With respect to newer programming models and environments, we extended the Extrae library

to support Python+CUDA applications and improved the CUDA support updating to the latest ver-
sions and correcting the information collected. We also validated we can instrument with Extrae
Julia applications using the MPI.jl package.

General improvements include a new naming of PAPI native events that assigns the same iden-
tifier for the same counter over different executions (unlike PAPI’s default identifiers), the extension
of Extrae to include new types of counters (uncore counters and infiniband counters) and the in-
strumentation of dynamic memory intercepting the calloc function and adding the total amount of
dynamic memory in-use across all program’s allocation and free operations.

3.3.2 Paraver

Paraver is the visualization and analysis tool. The main goal of the Paraver improvements imple-
mented in POP2 is to facilitate the usage for newcomers. In this sense, we have redesigned the hints
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Figure 15: Comparing the traditionalDetailedmodewith the newOpenMPBurstMode . Left images
correspond to the detailedmode and the samemetrics are shown on the right images in burst mode.
Top figures compare the computing phases where we can see that the burst mode discards all the
small computations colored in yellow in the left image. Middle view shows the information captured
regarding parallel loops, also showing how the burst mode does not record the smaller loops in the
trace. Bottom views express the time computing on the different phases, where the burst mode
summarizes the activity for the discarded fine-granularity phases, identifying the imbalance as a
gradient color from light-green (small) to dark-blue (large), with orange indicating phases that were
instrumented in detail.

menu to add more configurations and also new workspaces, facilitating the access to the most typ-
ical timelines and tables. An example of the hints and workspaces option is shown in Figure 16.
We have also improved the integration to run the clustering tool from the visualizer allowing us to
specify the name of the output trace as well as to be able to activate the sampling. To facilitate the
installation, we implemented a new functionality that allows to download and install the Paraver
tutorials clicking a button of the tool.

Figure 16: Example of the Paraver Hints menu for an MPI+OpenMP tracefile including the list of
basic views for the workspaces that characterize the computations (Useful), the MPI calls and the
OpenMP activity.

The POP studies also allow us to identify the need for new functionalities. In this aspect, we
have added new semantic functions at composing level (accumulate, log N, and exp) as well as a
new derived function (controlled: enumerate). To facilitate the programming of the tool we have
implemented search with regular expressions for event selection, and the option to link properties
when saving a configuration file in basicmode. With respect to the data visualizationwehave imple-
mented a new feature that enables the user to configure the timeline colors, and a new functionality
to reorder the columns of the tables.

Finally with respect to the tool execution, Paraver was parallelised with OpenMP on Linux and
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Mac environments and it has been extended to run also in parallel in Windows environment.

3.3.3 Dimemas

Dimemasmessage passing simulator ismainly used for the efficiencymetrics, despite some partners
also use this tool to analyze the application network requirements. Dimemas has been extended to
support the new MPI calls instrumented by Extrae (MPI_Mprobe, MPI_Improbe, MPI_Mrecv, and
MPI_Imrecv). The POP2 traces also allowed us to detect and fix some bugs in the translation of
MPI+OpenMP traces to Dimemas format and with race conditions.

The main developments in Dimemas have been concentrated in the support of accelerators and
OpenMP. With respect to accelerators, Dimemas can simulate platforms with accelerators but it
was limited to one stream per device and it has been extended to enable having multiple streams
per device as it is the most frequent scenario in the applications. With respect to OpenMP, despite
Dimemas does not model the execution of OpenMP, we have implemented the support to synchro-
nize the threads in a MPI+OpenMP simulation, so that the parallel regions keep the threads sin-
cronization.

3.3.4 Basic Analysis

The Basic Analysis module allows us to compute the efficiency metrics, and it was developed in
2013 (before the first POP project) to analyze pureMPI traces. It is written in Python, and it executes
Paramedir (a non-graphical version of Paraver) and Dimemas, postprocessing their outputs.

Within POP2, we have redesigned the Basic Analysis module to increase the robustness of the
tool and extend the programming models and configurations supported as we identified some part-
ners were using the tool, for instance for MPI+OpenMP traces that were not adequately supported.
We have added sanity checks to evaluate and report the weight of I/O and trace flushing as they
impact on the quality of the efficiency metrics and we detected that some users of the tool do blind
analysis without checking the content of the traces.

Figure 17 illustrates with the example of the NAS BT-IO the new information that characterizes
the I/O activity and its efficiency that expresses its weight with respect to the time outside the paral-
lel runtimes. When the percentage of time in I/O overpases a given boundary, a warning message is
printed because the I/O impacts on the efficiencymetric and it may improve or degrade for instance
the load balance compared with the same execution without I/O.

The tool detects the type of traces with respect to both the programmingmodels (MPI, OpenMP,
CUDA, ...), the level of information (Detailed or Burst mode) and the scaling approach (weak or
strong scaling), applying the right configurations and determining if the scenario can be simulated
with Dimemas or not. We have implemented the BSC proposal for the hybrid efficiencies that work
for any aplication of MPI+X and also the BSC file I/O efficiency (at MPI-IO and POSIX-IO levels).

Finally we have also extended the outputs generated by the tool (plotting and tables).

3.4 PyPOP
PyPOP is a new high-level tool for generating POP metrics and reports. NAG is developing that in
the second iteration of the POP project. Written in the Python programming language, it is designed
to provide a unified interface for the calculation of the POPmetrics using data from different perfor-
mance analysis tools, generating high-quality scaling plot and metric table figures, and efficiently
generating POP analysis reports incorporating these results.

PyPOP has been developed to extend the existing POP tool offering, adding new features to im-
prove the power and accessibility of the POP tools and metrics. The primary reason for developing
PyPOP is to streamline and automate many of the tasks involved in performing a POP assessment,
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Figure 17: Example of the Basic Analysis output text reporting the weight of the I/O and the I/O
effciencies.The tool warns the user when the percentage of I/O time is relevant as it is impacting on
the efficiency metrics.

such as calculating metrics and formatting reports. This will allow us to reduce the time and cost
involved in performing a POP assessment, which is one of the key goals of the POP2 project. The de-
sign of PyPOP is also intended to allow less-technical users to generate and explore the POPmetrics
by providing a simple interface that can accept multiple trace formats. In addition to streamlining
and improving accessibility to existing POP tool functionality, PyPOP adds analysis functionality not
currently available in any other POP tool, including per-region analysis of OpenMP performance,
and calculation of the various proposed and experimental metric types currently under develop-
ment.

PyPOP is open source under the BSD license and is available via GitHub5.

3.4.1 Design Philosophy

PyPOP is implemented as a Python package that uses the Jupyter Notebooks as the primarymethod
of user interaction. These notebooks may be accessed via any modern web browser or using a ded-
icated notebook viewer. Jupyter Notebooks are an example of what is known as “literate program-
ming” where blocks of source code are interspersed with detailed text describing what is being cal-
culated and discussing the results. This is particularly advantageous for complex technical work
such as a POP assessment as it allows a single notebook to be a complete document describing the
work that was done, including the inputs used, calculations made, and the analysis and discussion
created by the POP analyst. This notebook can then be compiled into a final report document using
included templates. As a result, the reproducibility of POP assessments produced with PyPOP is
vastly improved as the report document also contains the code and parameters used in the analysis.

The backend code of PyPOP is designed to be easily extensible to support new tracing tool for-
mats and new metric types. To achieve this PyPOP defines a Trace API and a Metric API, which

5https://github.com/numericalalgorithmsgroup/pypop
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specifies the functionality required of any code that is written to support a new tool or metric. New
classes can bewritten by inheriting from the provided Trace andMetric classes within PyPOP. These
are then registered with PyPOP as plugins providing the relevant functionality. At the time of writ-
ing, two trace format plugins are supporting Extrae trace data and manual input of raw data into a
spreadsheet-like interface. There are also a variety of Metric plugins supporting the core POP Met-
rics as well as the proposed hybrid MPI+OpenMP metrics and other experimental metrics for the
OpenMP and PThreads paradigms.

PyPOP is based onwidely used software in the scientific Python ecosystem, including the Pandas
and Numpy numerical and statistical libraries, the IPython/Jupyter stack for the notebook, GUI
and PDF conversion elements, and the Bokeh library to produce high-quality interactive tables and
scaling plots. This reduces the barrier to entry for users who wish to perform advanced analyses
or extend the functionality of PyPOP as it uses components which are likely to be familiar to most
scientific users of Python.

3.4.2 Interface Design

Two key requirements drive PyPOP’s interface design. First, the need for a standalone Jupyter note-
book to function as both an interactive analysis environment and a static final report, and for non-
Python programmers to be able to use PyPOP to generate reports without needing to write Python
code. These two requirements are achieved by making use of graphical user interface (GUI) ele-
ments within the Jupyter notebook, to provide user interactivity during the analysis.

To allow non-Python programmers to create reports, an “AnalysisWizard” interface is provided.
This allows the user to graphically select the trace files they wish to analyze and instruct PyPOP to
calculate the required POP metrics and generate the metrics table and scaling plot figures for the
user to inspect. If the user is happy with the generated metrics and figures, PyPOP can then be
instructed to populate a further notebook containing the relevant code to generate these figures
along with text cells containing the layout and structure of a POP report. By adding the relevant
description and discussion in these text cells, the user can create a full POP report which can be
converted to PDF format using the provided report generation utility. This workflow allows the user
to generate a complete, reproducible notebook based report without needing to write any Python
code.

The figures are generated by the Bokeh package, which outputs them in the form of HTML,
which can be rendered by the web browser. As well as being portable across many platforms (Win-
dows,Mac, Linux, mobile, etc.), this has the advantage that the generated plotsmay have an interac-
tive element. This is supported by Bokeh and leveraged in PyPOP to provide additional information
through tooltips. For example, when the user places the mouse cursor over a cell in the metrics
table, a tooltip will appear, providing a description of the particular metric and what it describes,
while a scaling plot tooltipwould provide information about specific data points such as the absolute
runtime and other key values. When converting to the PDF report, these figures are automatically
converted to static images before the PDF is compiled.

Users who are familiar with the Python languagemaywish to start with the AnalysisWizard but
are then free to use the full available functionality of PyPOP as they wish to perform more detailed
custom analyses. Alternatively, example notebooks are provided which demonstrate advanced us-
age of PyPOP for a variety of scenarios, e.g., analysis of individual OpenMP regions, which users
can adapt to their needs. Users can also access the raw data extracted from the trace files, as well
as the calculated metric data and additional metadata describing the trace file and run conditions
to perform completely custom analysis. The results of these analyses can then be rendered into the
Notebook and PDF report using the PyPOP plotting functionality. For example, the metric table
shown in Figure 10 was generated by PyPOP.
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3.4.3 Current Development Status and Further Goals

Currently, the following features have been implemented in PyPOP:

• Jupyter notebook based literate programming interface

• High-quality interactive tables and plots

• Analysis “Wizard” for non-Python programmers

• PDF report creation from notebooks

• Support for POP MPI and proposed hybrid metrics

• Support for Extrae traces and manual statistics input

Further development goals include:

• Extending support to additional trace file formats

• Supporting new POP metrics as they are defined

• GUI improvements based on user feedback

• Improve testing and tool robustness

• Improved documentation

• Generation of the report as slides

3.5 MAQAO
MAQAO (Modular Assembly Quality Analyzer and Optimizer) is a performance analysis and op-
timization framework operating at binary level with a focus on core performance. Its main goal is
to guide application developers through the optimization process with the generated reports and
hints.

MAQAO mixes both dynamic and static analyses based on its ability to reconstruct high-level
structures such as functions and loops from an application binary. Since MAQAO operates at the
binary level, it is agnostic of the language used in the source code and does not require recompiling
the application to perform analyses. MAQAO has also been designed to support multiple architec-
tures concurrently. Currently, the Intel64 and Xeon Phi architectures are implemented. A basic
support is also now provided for ARM.

The main modules of MAQAO are LProf, a sampling-based lightweight profiler offering results
at both function and loop levels, CQA, a static analyzer assessing the quality of the code generated
by the compiler. Both tools are integrated into the ONE View tool, which aggregates their results to
provide users with one consolidated view.

Until now, MAQAO provided its own way of displaying parallel and computation metrics. We
have been working on integrating the POP metrics model into MAQAO. The result is a new view at
the application level called POP metrics that provides the same layout common to all the tools. The
provided metrics are:

• Parallel efficiency: we provide sub-metrics load balance and communication efficiency. Since
MAQAO does not perform tracing, we do not provide the detailed sub-metrics of Communi-
cation efficiency (serialization and transfer).
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• Computation scalability: IPC scalability, Useful instructions scalability, Average Frequency
scalability but alsoVectorization efficiency scalability andOPC scalability. Althoughwepresent
moremetrics in this computation scalability section, the computedmetric is only based on IPC
/ Useful instructions and Frequency in order to remain consistent with the other tools (to be
able to compare figures for example).

The following figure 18 shows the latest version (05/2022) if the POP metrics in the ONE View
tool interface. We can see that we also provide raw computation metrics to keep an eye on the new
OPC and Vectorization metrics. This will be important to build the computation efficiency part of
the model.

Figure 18: POP metrics view in the ONE View tool

Our primary contribution was to work on a global vectorization metric described in 2.3 and a
more accurate metric at the instruction level (i.e. OPC as replacement for IPC).

3.6 Critical-path prototype
We developed a prototype tool that implements an on-the-fly critical path analysis, as described in
Section 2.1.4, while observing the execution of a program. This tool enables the calculation and eval-
uation of our critical path-based hybrid metrics with applications coming from POP2 WP5 studies.
The tool can also be used as a reference implementation for the critical path-based hybrid metrics
that can be used by the partners to extend the existing tools with support for these hybrid metrics.
In the following we want to briefly describe the implementation of this prototype tool.

In order to compute the critical path-based hybrid metrics we are only interested in the sum of
weights along the critical path. Therefore, we can implement the critical path metric following the
concept of a Lamport clock. Each execution unit has a local value of themetric. Theweight is added
to the local value for each step in the execution graph. Concrete synchronization in the execution
graph can have different characteristics. The simplest form is point-to-point synchronization, like a
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pair of send and receive calls inMPI. Another form is barrier synchronization, where each execution
unit needs to arrive before all can continue. Finally, OpenMP has several forms of channeled signal-
wait synchronization, where the signaling execution unit and the waiting execution unit do not
know all synchronization partners. An example is the synchronization of task execution with any
of the task synchronization constructs like barrier, taskwait, taskgroup, or dependencies with
other tasks.

Critical path in OpenMP The Archer (Section 3.1.1) runtime solves a similar challenge for
OpenMP-aware data race detection, translating OpenMP synchronization into vector clock seman-
tics, that the data race detection tool ThreadSanitizer can understand. Following the concept of
synchronization clocks, initially introduced by FastTrack6, all synchronization with signal seman-
tic updates the thread-local clock towards the synchronization clock, and all synchronization with
wait semantic updates the thread-local clock from the synchronization clock. We adapt and extend
the Archer runtime to implement the Lamport clock updates for the OpenMP part of our analysis.
In fact, our clock does not consist of a single clock value but keeps a separate clock value for CUE,
COM, and COO—and actually a copy of each for the process local and global critical path. In ad-
dition to tracking the synchronization, we integrate the time measurement for time spent in the
OpenMP runtime library into these OMPT callbacks.

Critical path in MPI For MPI, we implement the Lamport clock updates using communication
piggybacking with additional communication calls on shadow communicators to avoid interfer-
ence with application communication. For collective communication with barrier semantics in the
application (e.g., barrier, allreduce, or alltoall) we use a maximum all-reduction on all par-
ticipating threads’ clocks. Similarly, we use a broadcast of the root’s clocks for application calls
like bcast or scatter and a reduction on all participating threads’ clocks towards root’s clock for
application calls like reduce or gather.

6C. Flanagan and S. N. Freund, FastTrack: efficient and precise dynamic race detection, Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI, 2009
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4 Conclusions

In this document, we presented work performed by the POPmethodology and tools working group
in the context of WP8. We introduced various proposals for the extension of the POP methodology.
For the analysis of hybridMPI +OpenMP applications, we have proposed an additive, a multiplica-
tive and a critical path-based set of metrics.

Based on experience from applying the metrics to concrete POP audits, we discussed the pros
and cons of these metric sets. The multiplicative set of metrics focuses more on general concepts of
parallel programming models and naturally applies to any hybrid application using MPI + an arbi-
trary model X. The additive set of metrics requires less abstract knowledge but is harder to adapt to
new programmingmodels. The critical path-basedmetrics also require similar adaption to new pro-
gramming models but offer a breakdown of the basic POP model factors load balance, serialization
and transfer efficiency separately for each programming model.

Moreover, we showed that the hybrid metric sets help the application developers to better un-
derstand and solve performance issues in practice. Which model to choose is a choice of personal
preference similar to choosing the most suitable performance analysis tool. For specific use-cases
we provided some recommendations which model to choose. In the future we will not add more
hybridmodels because the comparability of themetrics is one of the key strengths of the whole POP
methodology, which gets harder the more different models are used.

Furthermore, we presented concrete proposals for metrics describing the influence of file I/O
and vectorization to the efficiency of execution. We also described how these metrics integrate into
existing POPmetrics. The vectorizationmetrics were integrated into the computational scaling and
have been proven to provide insights into optimization potential for real applications in practice.
The I/O metrics were integrated into the existing hierarchy as complementary metrics. Due to the
lack of use cases that we could find in the work package 5, we could not conduct thorough investi-
gations on the impact of I/O metric to improve performance.

We also presented a tool called PyPOP to support the creation of POP reportswith semi-automatically
collecting the POP metrics from collected traces. This tool can help to make producing the report
more productive. We also developed a prototype tool that allows very lightweight calculation of the
redefined multiplicative hybrid POPmetrics in an online fashion during runtime of an application.
In the future our existing analysis tools may adapt this approach implemented in the prototype tool
to also support the online calculation of POP metrics.

The effort spent in this work package 8 is crucial in order to enable the work done by the POP
services in work packages 5 and 6. The POP methodology and the analysis tools needs to be kept
up to date for all the different challenges faced by the POP services. Our proposed extensions to
the POP methodology have also been implemented in our tools. At the same time programming
models are also continuously evolving. For example, with the release of MPI 4.0 in the last year
new features were added to the standard. We expect application developers to include these new
features in their codes in the near future. Thus, we plan to update our tools to enable performance
analysis of such application codes accordingly.
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