
D7.3� Final co-design repository
Version [1.0]

Document Information

Contract Number 824080

Project Website www.pop-coe.eu

Contractual Deadline M36

Dissemination Level PU - Public

Nature R

Authors Xavier Teruel (BSC), Manuel Rodrigues (BSC).

Contributors Jesús Labarta (BSC), Marta García-Gasulla (BSC), Julian Morillo
(BSC), Joel Criado (BSC), Christoph Niethammer (HLRS), Ramil
Nabiev (HLRS), Martin Rose (HLRS), Lukas Maly (IT4I), Radim
Vavrik (IT4I), Tomas Panoc (IT4I), Michael Knobloch (JSC), Jon
Gibson (NAG), Jonathan Boyle (NAG), Federico Panichi (NAG),
Jannis Klinkenberg (RWTH), Fabian Orland (RWTH).

Reviewers Bernd Mohr (JSC).

Keywords Co-design, kernels, patterns, best-practices.

Notices: The research leading to these results has received funding from the European Union's Horizon 2020

research and innovation programme under grant agreement no824080.

©2019 POP Consortium Partners. All rights reserved.

www.pop-coe.eu

D7.3 - Final co-design repository
Version [1.0]

Change Log

Version Author Description of Change

v0.1 Xavier Teruel Initial version of the document.

v0.4 Manuel Rogrigues Adding site improvements and populating �rst stage con-
tents.

v0.9 Xavier Teruel and
Manuel Rodrigues

Adding executive summary, introduction and conclusion
sections. Including additional repository contents.

v1.0 Xavier Teruel Applying reviewer's comments.

2

D7.3 - Final co-design repository
Version [1.0]

Contents

Executive Summary 4

1 Introduction 4

1.1 E�ort distribution and expected KPIs . 5

2 Extensions and changes in the repository structure 5

2.1 Website new appearence . 6
2.2 Search feature . 7
2.3 Website and repository improvements . 7

3 New collections and associated contents 10

3.1 Collection of reports . 10
3.2 Collection of metrics . 10

4 Repository contents 11

4.1 New kernels . 11
4.2 New patterns and best-practices . 15
4.3 New programming models, disciplines and algorithms 20

5 Conclusions 20

5.1 Contribution complexities . 22

References 23

3

D7.3 - Final co-design repository
Version [1.0]

Executive Summary

This �nal deliverable consists of the POP Co-design repository �lled with global data gathered
until the end of the project. It has been published in the shape of a public website.

The project's proposal describes the distribution of the e�ort in terms of assigned Person
Months per partner. Internally we have distributed the assigned e�ort among three types of
activities: 1) management; 2) site extensions; and 3) site content. Management e�ort does not
just involve leading the technical discussion but also providing the workpackage methodology
through a set of guidelines. Site extensions activities are di�cult to quantify (in terms of KPIs),
but the document describes all the contributions performed during the period in that respect.
Finally, for site contents, we correlate the partner's assigned e�ort with the global project KPI
in terms of the number of micro-benchmarks (i.e., 20 at the end of the project as de�ned in MS8
- Final Methodology Milestone) to assign the partner's individual KPIs. The achieved number
of kernels at the end of the project indicates the ful�llment of this milestone.

The actual contribution (sum of all the individual KPIs) has been maintained above 92%
for micro-benchmarks, and above 100% in all the other elements; i.e., patterns, best-practices
and other classi�cation items. During the extension of this project (i.e., M37-M42), we plan to
�nalize all the reported items that were not closed at M36.

1 Introduction

This �nal deliverable gathers all the overall information available in the POP Co-design reposi-
tory. In previous deliverables, D7.1 Co-design repository structure [2] and D7.2 First co-design
repository [4] we already de�ned the structure and populated the repository with the interim
contents at the mid-term of the project. Therefore, in this document, we report all the additions
and extensions we have been working on during this last period.

Furthermore, this document also reports the progress to meet the targeted metrics of the
POP2 Milestone M8 Final methodology milestone, as de�ned in the proposal of the project.

As already reported in the previous document, the repository has been published in the
shape of a public website, containing a mix of downloadable codes, patterns, and best-practices.
The available codes contain a set of experimental results, providing an idea of the behavioural
pattern highlighted by them. To improve the website's navigability, we have included additional
collections to allow accessing them by means of several criteria: programmming languages,
programming models, algorithms, disciplines, and/or related metrics. The website can be visited
in the following URL:

http://co-design.pop-coe.eu

Given that the website is publicly available, in the following sections we will only list the
main contributions, and include a brief description of each element. The website can complement
the descriptions gathered in this document and provide detailed information.

The only two additions, concerning the website structure presented in the previous deliver-
able, are detailed in section 3 and they include: 1) a new report collection; and 2) the addition
of the hybrid POP metrics arising from POP2 WP8 Tools and Methodology.

4

D7.3 - Final co-design repository
Version [1.0]

1.1 E�ort distribution and expected KPIs

The e�ort of this workpackage consists of: 1) management (i.e., Mng.); 2) site extensions (i.e.,
Ext.); and 3) contents to the Resources for co-design website (i.e., Cont., it includes patterns,
best-practices and kernel developments).

The e�ort distribution in terms of Person Months per partner were established in the project
proposal [1]. The left-hand side part of Table 1 summarizes this information and it also includes
the kind of e�ort according to previous categories.

Partner
Person Months (PMs) MS3: M7-M18 MS8: M19-M36

Mng. Ext. Cont. Tot. K P BP CI K P BP CI

BSC 3 6 18 27 2 2 2 2 3 3 3 0

HLRS 18 18 2 2 2 2 3 3 3 0

IT4I 9 9 1 1 1 1 1 2 2 0

JSC 9 9 1 1 1 1 1 2 2 0

NAG 18 18 2 2 2 2 3 3 3 0

RWTH 18 18 2 2 2 2 3 3 3 0

Total 3 6 90 99 10 10 10 10 14 16 16 0

Table 1: Expected e�ort distribution per partner: Person Months (PMs), Kernels (K), Patterns
(P), Best-Practices (BP), and Classi�cation Items (CI).

Management e�ort does not just involve leading the technical discussion but also providing
the workpackage methodology through a set of guidelines. These guidelines were described in
Section 1.2 of D7.2 First co-design repository, and they have also been updated and reviewed
during this period. Section 2.3 contains a brief reference to these guidelines.

Even though activities carried out in site extensions are di�cult to quantify, Section 2 de-
scribes all contributions in this regard.

Finally, for the website contents, we correlate the partner's assigned e�ort with the global
project KPI in terms of the number of micro-benchmarks (i.e., 20 kernels at the end of the
project) to assign individual KPIs. We reproduce the same schema that was already proposed
in D7.2 First co-design repository, scaling the numbers1 according to the period duration of the
corresponding tasks: T7.2 Gather repository data and T7.3 Kernel de�nitions.

The right-hand side of Table 1 describes these individual partner's KPIs per milestone.

2 Extensions and changes in the repository

structure

Although the initial speci�cation of the repository was de�ned in previous deliverables, in this
section, we will list a series of changes and extensions made to the initial design. These changes
are motivated by the needs that we have encountered while populating the resources for co-design
website.

1For this period we did not expect to contribute in Classi�cation Items but just for these items arising from
the reported elements (e.g., including a kernel that uses a new programming language will involve to include such
programming language as a Classi�cation Item).

5

D7.3 - Final co-design repository
Version [1.0]

2.1 Website new appearence

Given that Resources for Co-design is part of the POP website and therefore linked to it, we
redesigned the entire website appearance and layout to reproduce the same look-and-feel. This
was necessary because Resources for Co-design is an independent website that lives in the POP
GitLab repository and was developed with a di�erent set of tools. To achieve the same layout
and appearance we had to perform substantial modi�cations in both the HTML and also CSS
code to get the desired target. Firstly, we analyzed the style of the main POP website, by
understanding its source code, and then tried to reproduce the same code patterns in the co-
design website. This was done for the style of the website and also for the new components that
we had to integrate, such as the main menu on the left side and the top-right navigation bar.
Speci�cally, we had to re-code the entire base.html �le and all the CSS �les to address all the
layout and appearance features. Furthermore, the redesigned website header and footer forced
us to modify the content in �les header.html and footer.html. Figures 1 and 2 highlight the
di�erences between the old and the new version of the website. It can be seen that to achieve
this new look we had to change almost every aspect of the website style and layout.

Figure 1: Resources for Co-design website old appearance and layout: the home page.

6

D7.3 - Final co-design repository
Version [1.0]

Figure 2: Resources for Co-design website new appearance and layout: the home page.

2.2 Search feature

We have included a new feature on the website: a search box to more easily �nd content on the
website. This search tool is based on the Google programmable search engine tool. To this end,
we had to create a google account associated with Resources for Co-design in order to con�gure
the search engine and integrate the correspondent source code into the website. This search box
is highlighted (in orange) in Figure 3. As it can be seen, this is a very simple and easy tool to
use. The user just has to type the content in the search box (top right corner) and the search
results are displayed in the page titled Search Results.

2.3 Website and repository improvements

We have re-structured and added new content to the guidelines that describe how to contribute
to the Resources for Co-design Repository. Speci�cally, we have deprecated the documentation
in the GitLab Wiki and added a new folder called docs that gathers and organizes all the
information necessary to contribute with content to the repository (e.g. layout repository and
kernel repository). This information is also accessible through the layout repository readme

7

D7.3 - Final co-design repository
Version [1.0]

Figure 3: Resources for Co-design website new search feature.

�le. Figure 4 shows where a user can �nd information on how to contribute to the layout and
kernel repositories.

Another issue that has been improved is the GitLab CI/CD2 pipeline. We have optimized
some of the stages to reduce the overall execution time that takes to parse all the information
and publish the Resources for Co-design website. We were able to reduce the execution time by
half (from around 10 minutes to 5 mintues).

In the context of the new Reports collection, we developed a script that helps to gather
information of all the reports that are going to be published in the website. This was required
because there is a large set of reports to add and it would be a time consuming task to do all of
this work manually.

Last but not least, the following set of improvements were completed in order to better
visualize and relate content in the website:

� First of all, we have standardized the way information is displayed. To highlight this
feature, we show in Figure 5 the Pattern Load imbalance due to computational complexity
(unknown a priori). Here, it is displayed in the begining of the content a grey box contain-
ing information regarding symptoms that can be used to identify this pattern (prologue).
Also, at the end we can visualize another grey box with useful information regarding possi-
ble best-practices and also programs that implement this pattern (epilogue). This prologue

2CI/CD, as Continuous Integration and Continuous Deployment.

8

D7.3 - Final co-design repository
Version [1.0]

Figure 4: Reources for Co-design repository guidelines.

Met Pat Bep Prog Lan Mod Disc Alg Rep

Metrics (Met) X X

Patterns (Pat) X X X X

Best-practices (Bep) X X X

Programs (Pro) X X X X X X X

Languages (Lan) X X

Models (Mod) X X

Disciplines (Dis) X X

Algorithms (Alg) X X

Reports (Rep) X X

Table 2: New displayed relationships among Resources for co-design collections. For example,
in Patterns we can see associated Metrics, Best-practices, Programs and Reports.

and epilogue pattern will apear in each collection that requires contextualization.

� Another area of improvement was relashionships between collection's items. By using
internal Jekyll3 variables we were able to create a network of relashionships and display
the related content accordingly. Table 2 summarizes such displayed relationships.

3As introduced in D7.2 Co-design repository structure, Jekyll is a website generator able to transform a set
of �les written in Markdown language into a set of HTML pages properly linked to each other.

9

D7.3 - Final co-design repository
Version [1.0]

� Finally, we have performed a veri�cation throughout the website and �xed a set of bugs:

� Linking content: We added the Jekyll feature base-url to link content in the website.
This allowed us to �x problems with broken links. As an example, we have an
internal page called C-report that was not displaying images and was improved with
the introduction of this �x (this is a internal page that is used to group information
regarding patterns and best-practices).

� Collections not displaying the entire content or displaying the wrong content: Here we
had to �x speci�c if conditions in the collections layout �les to display the information
correctly. For example, Resources for Co-design website was displaying programming
languages that were not associated with a given program. Also, the script that gathers
all programs was not retrieving information about all the public kernels (problem with
pagination feature of the GitLab API).

� To correctly show the version's repository branch (for each program), we had to mod-
ify the version's layout source code to point each version to the respective repository
branch instead of always pointing to the base branch. Also, we �xed an issue related
with duplication of experiments (experiments were being shown in versions that were
not related with those experiments).

3 New collections and associated contents

3.1 Collection of reports

A new collection called Reports was created to publically make available all the reports pro-
duced during the POP project where we have explicit permission from our customers. To this
end, we have created a new repository in the POP GitLab to place all reports that are suit-
able for publication. In this repository we combine both POP1 and POP2 performance audits,
assessments, and proof-of-concept reports. In order to �lter the reports that can be published,
we are following the information presented by WP3 Costumer Advocay, in particular, the tables
available in the POP2 Wiki that indicate the possibility of publishing these documents.

In Figure 6 we can see how reports are being displayed. They are being displayed in a table
format with �ve relevant �elds: Report name, Related Project, Type of report, Programming
Languages and Models.

3.2 Collection of metrics

This collection was already introduced in the previous version of the Website, so this is not a
new collection. Although, we have rede�ned all the content in order to keep up to date with the
latest developments in the speci�cation of the POP metrics. Therefore, we have introduced two
new POP metric classes: Multiplicative Hybrid metrics and Additive Hybrid metrics (Figure 7
shows a snapshot of the Multiplicative hybrid metrics and how is being displayed).

Furthermore, we have modi�ed the description of each metric and also display which patterns
and programs express that speci�c metric (Figure 8).

10

D7.3 - Final co-design repository
Version [1.0]

Figure 5: Reources for Co-design website: prologue and epilogue content.

4 Repository contents

4.1 New kernels

1. For loops auto-vectorization covers the essentials of optimizing the utilization of vector
instructions to compute a given data-parallel workload. In this context, the compiler can
provide valuable information about the limitations of the program and also hints on how
to modify the code to fully optimize it.

2. The kernel Python loops is a synthetic program based on a real world HPC Python script
that reproduces an ine�cient way to write loop-compute algorithms in Python.

3. The False communication-computation overlap kernel is a synthetic program which repro-
duces a communication/computation pattern between several MPI processes.

4. Alya is a simulation code for high performance computational mechanics. Alya solves cou-

11

D7.3 - Final co-design repository
Version [1.0]

Figure 6: Resources for Co-design website: new Reports collection.

pled multiphysics problems using high performance computing techniques for distributed
and shared memory supercomputers, together with vectorization and optimization at the
node level. This kernel corresponds to the algebraic system assembly of a �nite element
code (FE) for solving partial di�erential equations (PDE's). The matrix assembly consists
of a loop over the elements to compute element matrices and right-hand sides and their
assemblies in the local system.

5. SIFEL (SImple Finite ELements) is an open source computer �nite element (FE) code that
has been developing since 2001 at the Department of Mechanics of the Faculty of Civil
Engineering of the Czech Technical University in Prague. It is C/C++ code parallelized
with MPI. This is the SIFEL kernel, which implement the LDL matrix factorization from a
sparse matrix in symmetric skyline format and the computation of the Schur complement
matrix.

6. The Juelich KKR code family (JuKKR) is a collection of codes developed at Forschungszen-
trum Juelich implementing the Korringa-Kohn-Rostoker (KKR) Green's function method
to perform density functional theory calculations. Since the KKR method is based on a
multiple scattering formalism it allows for highly accurate all-electron calculations. One
of the main codes in the family is the KKRhost code which is used for electronic structure
calculations of periodic systems. The code is written in Fortran and parallelized using a
hybrid MPI + OpenMP approach. MPI ranks are logically arranged in a two-dimensional

12

D7.3 - Final co-design repository
Version [1.0]

Figure 7: Resources for Co-design website: Multiplicative Hybrid metrics.

grid. In one dimension ranks are distributed among atoms and in the other dimension
among energy points of the quantum system under consideration.

7. The Communication and computation trade-o� kernel is a simple molecular dynamics code,
with a relatively large amount of communication relative to the computation. The code
solves Newton's second law of motion for every atom: F = ma. The domain decomposition
is such that each MPI process hasN/p atoms, where p is the number of processes (assuming
this is perfectly divisible).

8. The CPU to GPU kernel implements the solution of the 3D di�usion equation. There are
currently the following implementations: cpu_di�usion (CPU, single core), cpu_opencl_-
di�usion (CPU, loops are executed in parallel using OpenMP) and opecl_di�usion (GPU,
the iterations are computed on the GPU, the CPU launches kernels and manages the date
transfer between MPI ranks).

9. The BLAS tuning kernel is a simple synthetic benchmark code that is used to show the
pattern and identify the best-practice to improve the performance of multiplication of
matrix-blocks. This is a code for timing parallel matrix multiplication, where all processes
have access to the data in A and B, and the parallelisation is achieved by splitting B over
the columns, i.e. Cb = A ∗ Bb. Moreover, Cb and Bb are matrix blocks generated by
splitting over the columns of matrix B.

13

D7.3 - Final co-design repository
Version [1.0]

Figure 8: Resources for Co-design website: IPC Scaling metric with related content.

10. The Samoa kernel stands for Space-Filling Curves and Adaptive Meshes for Oceanic And
Other Applications and has been developed at TU Munich. Samoa is a PDE framework
that can e.g., simulate wave propagations during tsunamis using adaptive meshes and
space �lling curves. It can either simulate built-in sample scenarios like radial_dam_-
break (perfectly balanced) and oscillating lake (imbalanced), or be used with datasets
from real tsunamis by providing corresponding bathymetric and displacement data �les.

11. The OpenMP collapse is a kernel which has been extracted from jCFD_Genesis appli-
cation. For a nested OpenMP parallel loop, when the number of threads is larger with
respect to the number of iterations and the iterations have similar length the parallel loop
will display computational imbalance. This imbalance is due to a sub-optimal distribution
of work among threads leading to idle cores. The ine�ciency of the nested loop increases
with the number of used threads.

12. The GPU kernel performs a naive matrix multiplication on a GPU. It is representative for
many vector and matrix operations performed in computational kernels. However, in the
original version the data transfer is not aligned to the word size, resulting in bad e�ciency.
The revised version tells the compiler that there is no pointer aliasing so it can generate
code with coalesced loads and stores. This signi�cantly increases performance, by nearly
three times on a NVIDIA A100.

14

D7.3 - Final co-design repository
Version [1.0]

13. The Access pattern bench is a set of programs to simulate various memory access pat-
terns that can arise in applications and have an impact on performance and e�ciency.
This kernel does not use any parallel programming model like MPI or OpenMP but is
mainly focusing on serial access patterns investigating cache and vectorization behavior.
Nevertheless, these access patterns can also appear for single processes/threads in parallel
workloads.

14. The imbalance Parallel File I/O is a version of the existent File I/O kernel. This POP
WP7 CoDesign code implements parallel �le I/O using MPI �le I/O with collective �le
access (all processors must participate in �le access) for unstructured data where processes
have di�erent amount of data elements. Ordering of the data elements in the �le is not
important. The �le format comes with a header including information for reading and
distributing the data as they where at the moment of writing, mimicing, e.g. needs for
checkpoint �les.

4.2 New patterns and best-practices

1. Ine�cient user implementation of well-known math problem. In the early stages of scienti�c
code development, developers (possibly scientists) tend to create a naive and easy-to-read
implementation of a required algorithm. Such an implementation have a great chance to
be ine�cient in some performance aspect.

(a) Leverage optimized math libraries. The fundamentals of this best-practice lie in the
rule: Do not reinvent the wheel. If a developer recognizes a well-known math rou-
tine that possibly causes a bottleneck in the program, it is recommended to do a
short research on available libraries that implement the recognized routine and �t the
program.

2. Lack of iterations on an OpenMP parallel loop. In some codes, the problem space is divided
into a multi-dimensional grid on which the computations are performed. This pattern
typically results in codes such as jCFD_Genesis, with multiple nested loops iterating over
the grid.

(a) Collapsing OpenMP parallel loops. In some codes, the problem space is divided into
a multi-dimensional grid on which the computations are performed. The idea behind
this best-practice is to collapse the iteration space in order to being able to create
more parallelism, keeping enough granularity.

3. Ine�cient Python loops. With Python it is very easy to unconsciously produce extremely
ine�cient code as it is an interpreted language. One need to put special attention on the
data types and sentences used in order to mitigate the interpreter's overhead since generic
Python objects are several orders of magnitude slower than other alternatives. Therefore,
after the prototyping phases when developing Python software, users need to identify the
heaviest compute functions and apply to them the most suitable optimization.

(a) Usage of Numba and Numpy to improve Python's serial e�ciency. When Python
applications have heavy computing functions using generic data types it is possible
to drastically increase sequential performance by using Numba or Numpy. Both
packages can be used at the same time or separately depending on code's needs.

15

D7.3 - Final co-design repository
Version [1.0]

4. Spatial locality poor performance. To achieve good performance in scienti�c and industrial
software it is essential to review how data structures are designed inside the software and
stored/loaded by the underlying programming language or machine. Although such design
decisions might be bene�cial in terms of readability and maintenance, it could signi�cantly
degrade performance if the way data is accessed and processed in the application does not
match the data layout. There are multiple examples for a mismatch between data layout
and access that might harm spatial locality of the access pattern including but not limited
to the following: Arrays of Structure (AoS) or Memory layout of multi-dimensional arrays
depending on the programming language.

(a) Spatial locality performance improvement. This best practice recommends to align
data layout and data access pattern to e�ciently use available resources and take
advantage of e.g., the caching behavior and vectorization units of the underlying
architecture. As this best practice highly depends on the code and data structures
at hand we will review the example of Array of Sturctures (AoS) that has been
introduced in the pattern. In order to mitigate problems arising from the strided
access pattern one option would be to adapt the data structure to better �t the
access pattern like illustrated in the following code snippet.

5. Very �ne-grained tasks/chunks. The essential purpose of parallel programming is to reduce
the runtime by dividing time-demanding computations among available resources. The
granularity is an important aspect that is often overlooked. The amount of work assigned
to a computational core/thread has to have a reasonable size so that the overhead caused
by thread/core control does not degrade the performance. When the tasks or chunks
are too small, this overhead can cost the same or even more time than the computation
itself. In such a case, running a program in parallel may not bring any bene�t or even can
consume more time and resources than running as a single thread application.

(a) Chunk/task grain-size trade-o� (parallelism/overhead). A trade-o� between paral-
lelism and overhead in terms of the POP metrics corresponds to balancing the Load
Balance and Communication e�ciency. In general, we aim to create enough chunks
(parallelism) in order to utilize all available computational resources (threads). At
the same time, we need to keep the related overhead low. Less overhead is re�ected
by higher Communication e�ciency. On the other hand, scheduling of threads at the
runtime is often needed in order to balance the workload e�ectively. This leads to
better Load Balance at the cost of the lower Communication E�ciency.

6. Low computational performance calling BLAS routines (gemm). In many scienti�c appli-
cations, parallel matrix-matrix multiplications represent the computational bottleneck. In
the case where each process has access to A and B, a strategy to parallelize the work is to
divide B into blocks so as to partition the computation over all the processes, and use the
BLAS dgemm routine on the individual blocks. This partition may lead into a low global
e�ciency and a non-optimal performance.

(a) Tuning BLAS routines invocation (gemm). It is best practice to write a simple code
in order to test alternative partitioning of the matrix multiplication. In the case
described above, where B is split over the columns, and A is not split, the size of the
matrix blocks is determined by the number of processes. However, if we split A over
the rows, whilst still splitting B over the columns, we have a choice of the size of the
matrix blocks for A and of B in smaller blocks.

16

D7.3 - Final co-design repository
Version [1.0]

7. High weighted communication in between ranks. This pattern can be observed in parallel
algorithms where a large fraction of the runtime is spent calculating data on individual
processes and then communicating that data between processes. An example of such a
parallel algorithm is molecular dynamics, where N particles interact with each other.

(a) Replicating computation to avoid communication. The best-practice presented here
can be used in parallel algorithms where a large fraction of the runtime is spent
calculating data on individual processes and then communicating that data between
processes. For such applications, the performance can be improved by replicating
computation across processes to avoid communication.

8. Writing unstructured data to linear �le formats. Many applications cope with unstructured
data, which result in unbalanced data distribution over processes. A simple example for
this are particle simulations where particles are moved around between processes over
time. So, when the simulation shall write the global state at the end - or in-between, e.g.,
for a checkpoint - each process will have a di�erent number of particles. This makes it
hard to write data e�ciently to a �le in a contiguous way. The same pattern can also be
found, e.g., in applications using unstructured meshes with di�erent number of elements
per process.

(a) MPI-I/O with pre-computed o�sets for each processes. Writing unstructured data
with di�ering amounts of data per process to a contiguous �le is challenging. If the
ordering of the data in the �le is not of importance, one approach using MPI I/O
functionalities to achieve good performance is to pre-compute per process o�sets into
the �le so that each process can then write his local data starting from this position
without interfering with the other processes.

9. Sequence of �ne grain parallel loops. This pattern applies to parallel programming models
based on a shared memory environment and the fork-join execution model (e.g., OpenMP).
The execution of this kind of applications is initialy sequential (i.e., only one thread starts
the execution of the whole program), and just when arriving at the region of the code
containing potential parallelism, a new parallel region is created and multiple threads
will start the execution of the associated code. Parallel execution usually will distribute
the code among participating threads by means of work-sharing directives (e.g., a loop
directive will distribute the loop iteration space among all threads participating in that
region).

(a) Collapse consecutive parallel loops. The main idea behind collapsing parallel regions is
to reduce the overhead of the fork-join phases. This technique consists on substituting
a sequence of parallel work-sharing regions with a single parallel region and multiple
inner work-sharing construs. It also include the possibility of removing work-sharing
barriers.

(b) Upper level parallelisation. When thinking about parallelizing an application, one
should always try to apply parallelization on an upper level of the call tree hierarchy.
The higher the level of parallelization the higher the degree of parallelism that can
be exploited by the application. This best-practice shows a scenario where moving
the parallelization to an upper level improves the performance signi�cantly.

10. Suitable programs to run on GPU. This pattern outlines criteria that can be used to
identify programs that can be implemented on GPUs using a programming model outlined

17

D7.3 - Final co-design repository
Version [1.0]

in the Porting code to GPU (iterative kernel execution) best-practice. This criteria can
be identi�ed as: code structure, algorithm and size of data set. Code structure: The
computational problem allows partitioning of the problem using the MPI programming
model. Algorithm: The algorithm must have a high degree of inherent parallelism. In order
to write GPU kernels that exploit the parallelism, a deep understanding of the algorithm
is necessary. Size of data set: The amount of data that is used in the computation must
not exceed the amount of memory available on a single GPU.

(a) Porting code to GPU (iterative kernel execution). The described programming pattern
is very similar to the traditional pattern used for CPU codes in the way that multiple
MPI ranks run on multiple compute nodes. The di�erence is that the GPU is not
regarded as an accelerator for certain parts of the code but as the main computing
unit. Each MPI rank uses one GPU at �rst in order to reduce the complexity of the
code and to avoid load imbalance within a single MPI rank. Each MPI rank can use
multiple threads for performing computations during the execution of GPU kernels
and during the data exchange among MPI ranks when the GPUs are idle.

11. Indirect reductions on large data structure. A pattern that appears on many codes com-
puting on a grid of topologically connected nodes is the reduction of values on the nodes
with possible multiple contributions from neighboring nodes. This pattern typically results
in codes with reduction operations through indirection on a large array as depicted in the
following skeleton.

(a) Using multidependencies. The idea behind the use of multidependencies is to split the
iteration space into tasks, precompute which of those tasks have "incompatibility"
(modify at least one shared node) and use the multi dependences feature in OpenMP
to achieve at runtime a scheduling e�ect comparable to coloring but at coarse granu-
larity (tasks) and dynamic. Precomputing the incompatibilities is an additional code
to be written and may represent an overhead. In any case, if the topology is relatively
invariant this can be amortized over many iterations.

12. GPU branch diverging. The execution of a thread block is divided into warps with a
constant number of threads per warp. When threads in the same warp follow di�erent
paths of control �ow, these threads diverge in their execution such that their execution
is serialized. Such a branch diverging scenario can be avoided by aligning the branch
granularity to warps.

(a) Align branch granularity to warps. In an optimal case all threads in a warp follow the
same code path. There are several software-based optimizations available a developer
can apply if manual alignment of branch granularity to warp size is not possible. Two
of the techniques that can be applied are iteration delaying and branch distribution.
Iteration delaying targets a divergent branch enclosed by a loop within a kernel. It
improves performance by executing loop iterations that take the same branch direc-
tion and delaying those that take the other direction until later iterations. Branch
distribution reduces the length of divergent code by factoring out structurally similar
code from the branch paths.

13. GPU uncoalesced memory transfer. On CUDA compute architectures, memory transfers
between global and shared memory are performed in a word size of 128 bit. Given that
smaller transfers are padded to that size, copying smaller values between global and shared

18

D7.3 - Final co-design repository
Version [1.0]

memory reduces the overall transfer rate. As a consequence, it is more e�cient to coalesce
narrow memory references into wide ones. Even though compilers occasionally perform
memory coalescing automatically, developers are usually responsible for coalesced memory
transfers by manually aligning loads and stores.

(a) Align loads and stores. The most e�cient solution to an uncoalesced memory transfer
issue would be to change the code so all the data is a 128 bit word is used consecutively.
However, such algorithmic changes are not always possible. But the developer can
help the compiler to generate more e�cient code by assuring that there is no pointer
aliasing, i.e. that two pointers don't reference the same chunk of memory. This
gives the compiler the freedom to apply various optimizations. On supported CUDA
devises it also allows the use of the GPU read-only data cache, potentially accelerating
data movement to the kernel.

In addtion, we are proposing alternatives best-practices for existing patterns (already in-
cluded in the previous milestones):

1. Taskifying communications. This is one of the several alternatives to parallelize the pack-
ing and unpacking operations when using a Message Passing Interface. The main idea
consist on encapsulating send and receives calls within an unstructured task, giving the
opportunity to overlap those communication with computation or with other communi-
cation. This best-practice applies to the existent Sequential communications in hybrid
programming pattern.

2. Overlap computation/communication with TAMPI. The main idea behind this best-practice
is to link with the intermediate Task Aware Message Passing Interface (TAMPI) library
in order to leverage in inherent features to overlap computation and communication and
increase the amount of parallelism avoiding to block on non-asynchronous MPI services.
This best-practice applies to the existent Sequential communications in hybrid program-
ming pattern; once we have applied the Taskifying communications best-practice.

3. Overdecomposition using OpenMP tasking. There are multiple approaches to tackle load
imbalances in an application. This best practice shows how over-decomposition with e.g.,
OpenMP tasking can help to reduce load imbalances as an alternative to classic loop-based
solutions. This best-practice applies to the existent Load imbalance due to computational
complexity unknown a priori pattern.

4. Task migration among processes. This best practice presents an approach using over-
decomposition with tasks and task migration to mitigate the load imbalances between
processes. This best-practice applies to the existent Problems in dynamic load balancing
pattern, and also to Load imbalance due to computational complexity (unknown a priori).

And �nally, we have refactored one of the existent patterns:

1. Sequential loops. Most of the program execution time is spent on cycles. One complication
with parallelizing the sequential loop is that the body of the loop may also depend on the
previous invocations of its self. This is a refactor ofManual loop unroling, to better capture
the actual problem included in this pattern.

19

D7.3 - Final co-design repository
Version [1.0]

4.3 New programming models, disciplines and algorithms

We have added one new programming model:

1. oneAPI. oneAPI o�ers an open, uni�ed programming model to simplify the development
and deployment of data-centric workloads across CPUs, GPUs, FPGAs and other types
of hardware architectures.

We have added one new discipline:

1. Computer graphics rendering. Rendering is used to produce a photorealistic or non-
photorealistic image from a 3D model. High-level structures representing a scene are
transferred into pixels accompanied by light and shading calculations of the scene's ob-
jects. The light propagation computations are complex, expensive, and this complexity
grows with the size of a scene. High performance clusters provide strong resources includ-
ing processors and accelerators to speed up the process and o�er a lot of memory for a
large data set manipulation. Rendering is used for 3D visualization (e.g., architecture,
medicine, mechanical engineering), the development of animated movies, computer games,
etc.

We have added one new Algorithm:

1. Finite di�erence methods. Finite di�erent methods (FDM) is a general numerical method
for solving ordinary di�erential equations (ODE) or partial di�erential equations (PDE)
raising from physical problems in engineering analysis and design. The original di�erential
equation is solved on equally spaced grid points where �nite di�erence formulas are used
to approximate the solution. This way, we can transform a di�erential equation into a
system of algebraic equations to solve.

5 Conclusions

In this section, we will summarize all the contributions described in the previous sections and
we will also present a snapshot of the current state of the Resources for Co-design website. Such
information will be crossed with the expected contributions as described in Section 1.1. Finally,
we will evaluate the overall success of the workpackage with respect to the proposed milestones.

Table 3 shows the current state of the Resources for co-design website. The table is organized
per partner and kind of contribution. For each entry, we de�ne the expected Target, the current
state for the on-going milestone (i.e., MS8 Status), the contribution reported in the previous
milestone (i.e., MS3), and the achieved value (considering Review and Closed as Ful�l4). The
bottom part of the table aggregates these values in order to evaluate the overall success.

The aggregated Ful�l value regarding the number of kernels (i.e., 24) indicates the ful�llment
of MS8 - Final Methodology Milestone, having surpassed the 20 micro-benchmarks as de�ned in
the project proposal [1].

With respect to the aggregated value of the Target kernels (i.e., 24), a total of 14 (58%) are
already closed, and 10 (42%) are already in review (what actually means that all of them have
been already published in the site). It is important to remark that one of these kernels is not
generating a new entry on the site, but extending one existing kernel with new versions.

4When a kernel reaches the Review state, it means it is already published in the site but we are still carrying
out a peer review (i.e., quality check pass). When any other item reaches this state it means there is a formal
de�nition of the element but it is being reviewed/discussed on the technical calls.

20

D7.3 - Final co-design repository
Version [1.0]

PARTNER Item Target
MS8 Status

MS3 Ful�l
Pending Progress Review Closed

BSC

Kernels 5 0 0 1 2 2 5
Patterns

14
0 1 1 0 5

16Best-practices 0 4 0 0 5
Classi�cation 0 0 0 1 4

HLRS

Kernels 5 0 0 2 1 2 5
Patterns

14
0 1 1 1 2

14Best-practices 0 1 1 1 3
Classi�cation 0 0 0 0 5

IT4I

Kernels 2 0 0 1 0 1 2
Patterns

8
0 0 0 2 1

17Best-practices 0 0 0 2 0
Classi�cation 0 0 0 2 10

JSC

Kernels 2 0 0 1 0 1 2
Patterns

8
0 2 0 0 1

4Best-practices 0 2 0 0 1
Classi�cation 0 0 0 0 2

NAG

Kernels 5 0 0 3 0 2 5
Patterns

14
0 0 0 3 2

14Best-practices 0 0 0 3 4
Classi�cation 0 0 0 0 2

RWTH

Kernels 5 0 0 2 1 2 5
Patterns

14
0 0 0 1 2

14Best-practices 0 1 0 3 4
Classi�cation 0 0 0 0 4

ALL

∑
Kernels 24 0 0 10 4 10 24∑
Patterns

72
0 4 2 7 13

79
∑

Best-practices 0 8 1 9 17∑
Classi�cation 0 0 0 3 27

Table 3: Current state of the Resources for co-design site at the delivery of this document.

The rest of the contributions (Patterns, Best-practices and Classi�cation items) have been
grouped into a single target. The main reason is to allow easily to shift some e�ort from one
category to another and also give some �exibility to partner's proposals. With respect to the
aggregated Target pages (i.e., 72), a total of 76 (105%) are already closed, 3 (4%) are in review,
and 12 (16%) are currently in progress.

Most of the partners have achieved their individual KPIs (i.e., Target vs. Ful�l). The most
remarkable positive deviation appears in the IT4I entry, that contributes with 9 extra pages
with respect to the original plan. Such contribution was done at the beginning of the project
when including the programming model descriptions into the website. In the other hand, JSC
still misses 2 patterns and 2 best-practices, but all these issues are already in progress and there
is a �rm comittment to make them ready for discussion in the short-term (during the project
extension).

Regardless of such deviations, the actual global contribution has reached 100% in the case
of the kernels, and above 100% in all the other cases. During the extension of the project (i.e.,

21

D7.3 - Final co-design repository
Version [1.0]

M37-M42) we plan to �nalize all the reported items in this document that were not closed at
M36 yet.

5.1 Contribution complexities

One of the main issues when accounting for the actual e�ort devoted to the workpackage is to
take into account the di�erences (in terms of complexity) among kernels, patterns/best-practices
and classi�cation items.

The �rst observation would be that working on a kernel involves creating a repository, devel-
oping multiple versions of the code, documenting such entries, and also reporting some results
(e.g., a performance comparison among versions); so it is one of the most time-consuming ac-
tivities within the workpackage.

A second observation would be that describing either a Pattern or a Best-practice also
involves developing the speci�c ideas behind the problem or the solution, demonstrating potential
penalties or improvements, linking the contents with actual applications, etc. So, there is also
a greater complexity developing these entries than describing any other classi�cation item. In
fact, the average discussion period for patterns/best-practice is around 30 days (i.e., since the
ready-discussion label is assigned until the execute-publish label �nally appears), while on the
other side, the corresponding discussion period for a classi�cation item is around 12 days.

So, the �rst conclusion we can infer about contribution complexities is:

Kernels >= Patterns/Best-practices >= Classi�cation Items.

It could be di�cult to set a ratio among the di�erent kinds of contributions, but one approx-
imation could be including the number of subitems within the kernel development. That is, to
sum all the components arising from the creation of a kernel: kernel's description, versions, and
experiments. This approach also links with another concern on kernel development. The cases in
which the baseline code already exists but we want to create alternative versions implementing
a di�erent best-practice. Then, we can just count the subitems we are actually including in the
existing kernel.

Table 4 shows the kernel decomposition in subitems and it also accumulates the total number
of pages of the rest of the contributions per partner basis. The table summarizes the actual e�ort
devoted to this workpackage that contributes with 56 di�erent code versions to the Resources
for co-design site.

Considering the di�erences between Patterns and Best-practices versus other classi�cation
items will imply looking for a ratio that could normalize the corresponding e�orts. However,
and for the purpose of this document, it is su�cient to remark such di�erences.

The total contribution of this work package with respect to micro-benchmarks could be
summarized as: 23 kernel repositories, 57 kernel's versions and 43 experiment reports associated
with them.

22

D7.3 - Final co-design repository
Version [1.0]

PARTNER Program
Kernel

Kernel Non-Kernel Total
D V E T

BSC

FFTXlib 1 2 2 5

24 16 40
Communication Imbalance 1 2 2 5
False Comm-Comp Overlap 1 2 2 5
For Loops Auto-vectorization 1 2 2 5
Alya Assembly 1 2 1 4

HLRS

DuMuX/DUNE 1 3 0 4

22 14 36
Rank DLB 1 2 1 4
Python Loops 1 4 4 9
CPU to GPU 1 1 1 3
Imbalance Paralell I/O (v) 0 1 1 2

IT4I
BEM4I miniApp 1 2 1 4

13 17 30
SIFEL Kernel 1 3 5 9

JSC
JuPedSim 1 3 0 4

9 4 13
GPU Kernel 1 2 2 5

NAG

Parallel File I/O 1 7 1 9

28 14 42
OpenMP Critical 1 3 2 6
Comm-Comp Trade-o� 1 1 2 4
OpenMP Collapse 1 2 1 4
BLAS Tuning 1 2 2 5

RWTH

Calculix Solver 1 2 2 5

27 14 41
Calculix I/O 1 2 2 5
JuKKR KLoop 1 2 2 5
Samoa 1 3 3 7
Access Pattern Bench 1 2 2 5∑

Items 23 57 43 123 123 79 202

Table 4: Total e�ort in number of pages (Kernel and non-Kernel). Kernel: Description (D),
Versions (V), Experiments (E), and Total (T) page kernels.

References

[1] POP Consortium. Performance Optimisation and Productivity: A Centre of Excellence
in Computing Applications, 2018.

[2] POP Consortium. D7.1 - Co-design repository structure, 2019.

[3] POP Consortium. D6.1 - First Report on Proof-of-Concept, 2020.

[4] POP Consortium. D7.2 - First co-design repository, 2020.

23

	Executive Summary
	Introduction
	Effort distribution and expected KPIs

	Extensions and changes in the repository structure
	Website new appearence
	Search feature
	Website and repository improvements

	New collections and associated contents
	Collection of reports
	Collection of metrics

	Repository contents
	New kernels
	New patterns and best-practices
	New programming models, disciplines and algorithms

	Conclusions
	Contribution complexities

	References

