

D5.2 POP Analysis Report

Version 1.0

Document Information

Contract Number 824080
Project Website www.pop-coe.eu
Contractual Deadline M36, November 2021
Dissemination Level Public
Nature Report
Author Judit Gimenez (BSC)
Contributor(s)
Reviewer Samir Ben Chaabane (TERATEC)

Keywords Performance assessments, Evolution and analysis,
Analysis report

Notices:
The research leading to these results has received funding from the
European Union’s Horizon 2020 research and innovation programme under
grant agreement No “824080”.

 2015 POP Consortium Partners. All rights reserved.

http://www.pop-coe.eu/

D5.2 POP Analysis Report
Version 1.0

2

Change Log
Version Author Description of Change

V0.1 Judit Gimenez Initial Draft

 (Final Change Log entries reserved for
releases to the EC)

V0.2 Sameer Ben
Chaabane Reviewed version

V0.3 Judit Gimenez Revised version

V1.0 Judit Gimenez Final version

D5.2 POP Analysis Report
Version 1.0

3

Table of Contents

Executive Summary... 4

1. Introduction ... 5

2. Performance Assessments Evolvement .. 6

3. Performance Assessments Analysis .. 9

1 User request ... 10
2 Code ... 12

2.1 Code Programming .. 14
2.2 Code Scaling ... 16

3 Efficiencies .. 20
4. Findings and recommendations.. 27

5. Assessing CoEs applications .. 28

Acronyms and Abbreviations ... 31

List of Figures .. 32

D5.2 POP Analysis Report
Version 1.0

4

Executive Summary
This deliverable reports on the services provided by the Performance
Assessments Work Package (WP5) of the POP2 CoE project. The
Performance Assessments Work Package is the framework for one of the
main services provided by the POP Centre of Excellence with the goal to
promote best practices for evaluating and diagnosing the performance of
POP2 customers’ parallel codes.

This deliverable describes the work done during the second half of the project
and characterizes the cases analysed during the full POP2 project,
summarizing findings and recommendations provided to the customers. Some
of the metrics are compared with the experience collected on the predecessor
POP CoE project, and with the previous report from May 2020.

As a reference of the activity of the assessment services work package,
during the 3 years of POP2 we have had 193 new services; until November
9th, 136 studies have been completed and there are 6 services in reporting
state that probably will be completed before the end of the third year; there
are also 26 services in progress that will be completed in the coming
weeks/months. These sum up to a total of 168 services either completed or in
progress overpassing the KPI defined for the assessments work package of
140 studies completed or in progress. Between 40 to 50% of the users have
requested a second service (including not only the assessments but also the
proof-of-concepts), and in multiple cases the relationship has been extended
to a third service. A total of 30 codes from 10 CoEs have been audited by
POP2, close to half of them with multiple assessments summing up a total of
50 services. Only around a 10% of the services generated during POP2 have
been cancelled and a significant percentage of these cancellations were
invalid requests.

The annexes of the deliverable are a list of the services and the reports
produced in the second half of the project. Due to confidentiality issues of
some users, those annexes are not included in the public version of the
deliverable.

D5.2 POP Analysis Report
Version 1.0

5

1. Introduction
This deliverable summarizes the Performance Assessment services carried
out during the first 3 years of the POP2 project. These services are provided
free of charge to developers and users of parallel codes with the goal to help
them identify the current bottlenecks and to promote the use of performance
analysis as a best practice when running parallel codes.

After the end of the first POP project, some of the partners were able to
continue providing services on a best-effort basis. The main goal was to
complete the assigned studies that were either in progress or had not yet
started, but also to demonstrate our commitment to the Centre of Excellence.
Even though during that period the volume of work was significantly reduced,
we maintained the possibility for users to request new services, and when
POP2 started on December 1st 2018, we already had 24 studies either in
progress or ready to start.

As of November 9, 2021 (at the time writing this deliverable), we have 217
assessment services, 193 studies originated since the start of the POP2
project. Most of the assessment services correspond to initial audits (183
studies) while 34 of them are follow-on assessments to extend the initial
study, working on the same code (or a revised version) with the same user (or
colleagues from the same group). During the three years, 32 assessment
studies have been cancelled, most of them after a long period where the user
did not reply to our requests, few of them because the user moved to a
different department or company. There are few cases of invalid requests
such as training requests through the web form, requests to analyse not
parallel codes or duplicated requests. Close to one third of the cancelled
studies were studies from the original POP project that were delayed until the
start of POP2.

In POP2, KPIs as well as milestones combine the studies from both WP5 and
WP6 (Proof-of-Concept). We use as a reference the studies either completed
or in progress because in the original POP CoE project, this was identified as
the best indicator to measure the CoE progress. In order to have a reference
value to measure the progress of each work package independently, WP5
and WP6 initially agreed that around 75% of the studies would be
Performance Assessments and the other 25% would correspond to Proof-of-
Concept studies. This distribution was decided considering both the effort
assigned to each work package and the average effort required by each type
of study. This ratio was re-evaluated in the second half of the project, slightly
increasing the WP5 studies from 135 to 140.

This deliverable focuses on four main aspects: the evolvement of the
assessment services (section 2), the characterization of the services provided
(section 3), a summary of the findings and recommendations (section 4) and
the assessments of the CoEs applications (section 5). In the rest of this
document, we use the term “executed” to refer to the studies either completed
or in progress that is the metric used in the KPI.

D5.2 POP Analysis Report
Version 1.0

6

2. Performance Assessments Evolvement
This section describes the growth of the service requests and their status as
well as their distribution within the partners that participate in this work
package (all except TERATEC).

Figure 1 plots the evolution of the POP2 Performance Assessments during
the project. To evaluate the number of studies with respect to the work plan,
we include as reference a linear distribution (blue line). The vertical line splits
the chart in the two periods of 18 months. The three metrics plotted classify
the studies based on their grade of completion: completed corresponds to
studies already finalised, executed groups the studies completed and the
ones in progress, and total adds the studies requested that are not yet started
or that are waiting the user. In this figure we do not explicitly include the
studies that were cancelled but we can see their impact when the lines go
down from the previous month.

Figure 1: POP2 Performance assessments evolution

Focusing on the second part of the project, we can see that during the full
period the linear distribution is situated between the completed and the
executed studies, getting closer to the completed studies.

During the full 3 years, the total number of studies has been always
significantly higher than the planed one, indicating that the current volume of
new requests guarantees that there is enough work even when some studies
are delayed, stopped by the users or even cancelled.

The assessments work package contributes in three milestones: MS2, MS5
and MS7. To validate the achievements with respect to the milestones, the
plot includes the 3 milestones isolating the contribution of WP5 to reach the
final target of 140 studies completed or in progress at M36. First thing we can
see is that all of them are close to the linear distribution but, with a higher
slope. Milestone MS2 was planned for M12 with a global goal of 50 studies
(39 from WP5). Considering only WP5 goal, the milestone was reached in
advance at M8 but if we consider only the studies that are on an advanced
progress, the milestone was achieved at M13. Milestone MS5 was scheduled
for M24 with a global goal of 120 studies (93 from WP5). Considering only
WP5 goal, this milestone was reached at M20, but again if we do not consider

D5.2 POP Analysis Report
Version 1.0

7

the studies that are not close to completion, the milestone was reached on its
scheduled date. Finally, MS7 is scheduled at M36 with a global goal of 180
studies (140 from WP5). Considering only the studies either completed or very
close to completion, the milestone is also reached in advance, at M35.

Figure 2 plots the distribution of the POP2 Performance Assessments with a
more detailed classification of their state. In this plot we can also identify the
executed studies that are in a reporting state, either writing the report or
reporting the results to the customer, so very close to completion (referenced
in the previous paragraph). We can also see the evolution of the number of
cancelled studies, verifying they represent a very small percentage of the
requests. Finally, with respect to the studies that are waiting, they correspond
in most cases to studies where the POP analyst is waiting for some input from
the user (for instance providing input cases or access to the binary, or waiting
that the customer collects the performance data).

Figure 2: Distribution of the POP2 Performance assessments

Figure 3 plots the assessments distribution per partner using the previous
states. As not all the partners have the same effort and budget, we agreed on
a weighted distribution to compute the target number of studies per partner,
but to facilitate the comparison the plot is expressed as a percentage. We
include in the plot the values for the whole consortium (labelled as Total). As
this report is written very close to the initial end of the project, with a uniform
linear distribution the target would be to reach 100% with the completed,
reporting and in progress studies. This means the orange part of the bar
should start above 100%.

D5.2 POP Analysis Report
Version 1.0

8

Figure 3: POP2 Performance assessments per partner

We can see that despite initially expecting a very similar bar for each of the
partners, the differences are significant.

Three partners have reached 100% (or more) of their goal when considering
only the completed studies. BSC has the higher bar and the completed
studies are 133%, reaching 186% of the planned assignment. This is partially
due to the fact that as leaders of WP5 we assumed studies when it was not
possible to assign to other partners. JSC has completed 106% of the planned
assignment and the total assignment is 150%. As it was already reported in
D5.1, around 25% of the POP service requests for the JSC user community
are charged to other projects and not to the POP2 project. AACHEN reached
100% with completed studies and the total assignment is 131%.

NAG is very close to 100% when considering only the studies completed and
reporting (97%), and goes up to 113% including the studies in progress. Both
IT4I and HLRS reached also their goal when including the work in progress
with a percentage of 117% and 104% respectively. With the same metric,

UVSQ has only achieved 88%, due to some recent cancellations as well as to
an assessment that was moved to Proof-of-Concept. It's the only partner that
has a global assignment lower than the target.

Finally, the consortium as a whole has completed 97% of the targeted studies
and reached 101% of the KPI even if we only consider the studies that are
either completed or reporting. This value goes up to 120% if we add the
studies in progress and the total assignment is of 131% of the initial plan. As
a last measurement of the assessment studies, Figure 4 plots the distribution

D5.2 POP Analysis Report
Version 1.0

9

of POP2 WP5 and WP6 studies to measure the ratio of studies that are
extended after the initial audit. We also include as reference the total number
of cancelled studies considering both work packages.

Figure 4: POP2 Studies (WP5+WP6)

We can see that the continuation studies are very similarly distributed
between Follow on Audits and Proof-of-Concept studies with 13% and 15% of
the total studies.

Without considering the 14% of the studies that have been cancelled, the
numbers indicate that 43% of the Audits are extended with a second service.
Considering that the total number of studies completed when writing this
deliverable is 136, the ratio of second services goes up to almost 50% and
seems a very high percentage considering that for some of the codes the
assessment reports a good performance where there is no need for
improvement.

Still, we have to take into account that this metric is not necessarily a very
good indicator to measure the percentage of maintained collaborations as it is
limited to cases where the second service is done for the same code-team
and the same code.

3. Performance Assessments Analysis
In this section we update the analysis reported in deliverable D5.1,
characterising the assessments carried out during the 3 years of POP2
project. As in the previous deliverable, the three axes considered for the
analysis are: the user request, the code being assessed and the execution
efficiencies measured in the study.

D5.2 POP Analysis Report
Version 1.0

10

For the two first characterizations we focus on the initial audits (to avoid that
multiple studies for the same user and code generates a small deviation). We
include the cancelled studies when the data is available. And for the scaling
analysis we introduce also the core-counts of the Follow on studies. For the
characterization of the results, we focus on the assessments to which the
progress allows us to collect the data being analysed.

1 User request
The first aspect we analyse is the user profile with respect to the code. Figure
5 plots the distribution on the 3 roles we identify in the request form. More
than 75% of the users are core developers of the code, a profile that
maximizes the potential impact of the assessment as they are in a good
position to implement the assessment recommendations to improve their
code. A sizable 13% (25 users) of the requests come from users of a code
that cannot implement modifications themselves, where they are nonetheless
interested on identifying the bottlenecks and in many cases they want to share
the report with the code owners. These percentages are very similar to the
ones reported in both the previous deliverable and the first POP CoE project.

Figure 5: User role

A second aspect that we consider relevant to remark is the profile of the users
with respect to their familiarity with performance tools. With the same
distribution that in D5.1, 71% of the users that replied to that question (126
answers) have no previous experience with performance tools, reflecting the
need of support from an expert to assess the code performance.

D5.2 POP Analysis Report
Version 1.0

11

The request form includes a question about the aspect that the user considers
most relevant to focus on in the assessment. Figure 6 plots the classification
of the service requests. Close to 65% of the users request a performance
check, indicating they are interested in a global analysis of the code. This
percentage has been reduced from the previous deliverable where the value
was close to 75%. That reduction is reflected as an increase from 11% to 25%
in the requests that selects either to identify areas of improvements or analyse
the efficiency of the parallel execution.

Figure 6: Service request

The last aspect we analyse from the user request is the answer to the
question on how they found out about the POP project and services. Figure 7
plots the distribution of sources. Almost 70% of the requests come after a
direct contact with one of the POP partners. Word of mouth and project
partners sum up close to 23%. Grouping the sources of social media, website,
email and news, the percentage is much lower (only 7%) indicating the need
for a direct contact either from a POP partner or from some person that is
already aware of the POP CoE services. The distribution is quite similar to the
one observed in the previous analyses.

Figure 7: Source of contacts

D5.2 POP Analysis Report
Version 1.0

12

2 Code
The first characterisation of the codes is based on the scientific/technical area
as specified in the request form. Figure 8 plots the distribution over the
different areas listed in the form. Around 63% of the codes are distributed
between the areas of Earth, Engineering and Physics. Between 7 and 8% are
the rates of both Aerospace and Chemistry. All other areas represent less
than 5% except Others that is close to 6%.

Figure 8: Code scientific/technical area

The results are similar to the percentages measured half way in POP2, with a
reduction of the weight of the top 3 areas from 73% to 63%, with a higher
impact from Earth and Physics; and an increase of the contribution of both
Aerospace and Chemistry. Comparing the results with the initial POP CoE
project, there is a very significant increase in the number of Earth Science
codes and still some reduction of the Chemistry codes. While in both previous
analyses, the sum of the traditional sectors (Physics, Engineering, Earth and
Chemistry) represented a percentage of around 77%, this percentage is
reduced down to 70%.

One of the optional questions we ask users is if the code was analysed before
their request. From 128 answers, 75% of the codes have not been previously
analysed. That may mean that a high percentage of the owners of codes
previously analysed do not request POP2 services maybe because they
consider they do not need to use POP services or, in general, that they
consider they do not need to periodically analyse the code. But it also
identifies a large number of codes that have never been analysed and where
the POP service is playing a relevant role.

D5.2 POP Analysis Report
Version 1.0

13

Figure 9 plots the profile of the code with respect to its mode of execution.
This is also an optional question where we got 90 replies. Close to 80% of the
codes run as standalone, but 10% of the codes are usually executed as part
of a coupled application, which is a very frequent scenario for Earth Science
codes. In fact, both the percentage of coupled codes and the percentage of
codes from Earth Science have decreased compared to D5.1.

Figure 9: Code profile

To characterize the potential distribution of the code and the impact of
improving them, Figure 10 shows the type of code licensing. With a population
of 86 answers, close to 60% of the codes are distributed with a free license or
no license, and only 23% have a commercial license. An 8% of the codes are
limited to internal use, some of them because they are still under
development. These percentages were similar in the previous analyses.

Figure 10: Code license

D5.2 POP Analysis Report
Version 1.0

14

2.1 Code Programming
The following plots target to characterize the code with respect to the
programming model and the programming language. We need to clarify that
users specify the programming models of all the existing variants of the code
and in many cases the analysis focuses to the version most frequently used.
For instance, codes that have a version that can run on accelerators may be
still under development so the user is not interested to analyse this part of the
code. Nevertheless, and just for this aspect, we have detected a relevant
increase of requests to analyse codes running with accelerators, during the
last two years.

Figure 11 plots the parallel programming models used by the codes. 83% of
the codes use MPI to be able to run in distributed memory architectures.
Nevertheless, only 46% of the codes are pure MPI codes and 37% also
support multithreading and/or kernel offload to accelerators. A total of 45% of
the codes have support for threads, mainly through OpenMP but also using
POSIX threads or even both OpenMP and POSIX threads concurrently.
Somehow surprisingly, 13% cannot run on multiple nodes as they are
programmed using threads, and 5% extended the parallelization with
accelerators instead targeting distributed memory (indicating the target
platform is a single computer that usually includes an accelerator). Finally, still
only 16% of the codes have support to run on accelerators which is typically
combined with MPI. All these percentages are very similar to the ones
obtained in the previous study. Despite TBB is a multithreading programming
model, we did not include them on the threads because neither JSC nor BSC
tools support that programming model.

Figure 11: Parallel programming model

Comparing with the statistics collected during the POP CoE project, the
percentage of MPI+threads has decreased while the percentage of codes that
support accelerators is very similar.

D5.2 POP Analysis Report
Version 1.0

15

To check if there is a correlation between the scientific area and the
programming model used, Figure 12 plots the most frequent programming
model per area (discarding areas or programming models with just one code).
Bluish colours are used to group codes that use MPI while orange-like colours
group shared memory codes. We can see that both pure MPI codes and pure
shared memory apply in almost all the sectors except Aerospace. We can
also confirm that alternatives with support to accelerators increase its
percentage in almost all the sectors.

Figure 12: Programming model per scientific area

In that sense, it is surprising that there are no codes with support to
accelerators in the Biology and genetics area.

The distribution with respect to the programming language is plotted in Figure
13. Pure C++ codes have the higher percentage with 30% of the codes,
similar to the previous analysis; while pure Fortran codes increases their
percentage from 23% to 29%. C++ or C is used in 62% of the codes while
Fortran contributes in 52%. Finally, 45% of the codes use also Python and
pure Python codes are 4%.

 If we compare the distribution with the previous statistics half way in the
POP2 project, the higher increase is in Fortran codes as well as in the codes
that include Python (but not for pure Python codes).

The increase of Fortran codes gets a distribution closer to the one measured
in the predecessor POP project where pure Fortran was the most frequent
scenario. The increase of codes with Python is an evolution we have seen in
the full life of the CoE.

D5.2 POP Analysis Report
Version 1.0

16

Figure 13: Programming language

Figure 14 plots the most frequent programming language per area (discarding
combinations with just one code). Light blue colours are used for C++/C
codes and green for pure Fortran codes. Yellowish colours are used to mark
the codes that include Python. We can see that in many sectors there is a
balance between C/C++ and Fortran (this is clearer in the areas with a bigger
population). We can also see that Python is spread over almost all the areas.

Figure 14: Programming language per scientific area

2.2 Code Scaling
We collect four metrics for the scaling of the codes. Three of them are
collected through the form where the user has to specify the number of cores
that are typically used in production runs and in development runs, as well as
up to which number of cores he/she is satisfied with the performance

D5.2 POP Analysis Report
Version 1.0

17

achieved. The fourth metric corresponds to the largest run that has been
analysed in the assessment. It is important to remark that the user is who
determines the scale that has to be analysed. Figure 15 compares these four
metrics classifying the values with respect to their order of magnitude.

Figure 15: Scales comparison

The production runs are frequently in the range of a few thousand cores while
the development runs typically use one order of magnitude fewer resources.
The scale that the user is satisfied with the performance is similar to the
production runs as it may be expected, even if this question obtained a lower
number of answers (76 versus 108).

Finally, the audited runs are also in the range from 100 to 10.000 cores with a
significant increase of the studies that analysed runs between 101 and 1000.
We should notice that many of the codes that are audited with up to 100 cores
were either pure thread-based codes or applications that use accelerators.
The percentage of studies audited in the range between 10001 and 10.000
has also been increased with respect to the previous report. As it was written
in D5.1, we think it is interesting to remark that we analysed 10 codes with a
range of cores between 10.000 and 1.000.000 cores (with 309696 being the
largest case analysed), higher than their range in production. That indicates
that these studies were used to validate the performance of the codes at a
larger scale that the one typically used.

Focusing on the 3 metrics provided in the form classifying the data provided
based on which value (production, development or satisfied) is larger. Figure
16 plots the result of this classification. We can see that 27% of the users that
provided the 3 metrics are satisfied with the scaling larger than the one used
in production or development. In fact, for many of these cases, this value is
significantly higher. In our opinion this category is grouping two user profiles:
users that do not have enough resources to do larger runs and users that
misunderstood the question, because if they are satisfied with a much larger
scale than the one they use, they will not feel the need to improve the code
performance. Next ranking is for the users that give similar values for all the
metrics and correspond to 25% of the cases and users that are satisfied with
the scaling of the production runs (close to 7%). These categories will
correspond to users that want to increase the scaling and feel the need to
improve the performance first. A small 1.7% of users are satisfied with the

D5.2 POP Analysis Report
Version 1.0

18

development runs that are larger than the production scale, indicating it may
be a code under development. All other groups, representing almost 16% of
the users that provided us with that data, are not satisfied with the scaling of
their production runs.

Figure 16: Scaling metrics

To better compare the four metrics, the next four figures (Figure 17 to Figure
20) focus on the studies we obtained the four metrics and plot their values
depending on its range.

Going from small to large scales, Figure 17 plots the metrics for the studies
with values up to 500 cores. We can identify very different behaviours in this
group: users that benefit from the analysis to explore the scaling on a much
larger scale than the one they are using or for which they can be satisfied
(most frequent scenario), users that have very similar values for the 4 metrics
and users that requested us to analyse a scale smaller than the one they told
us they are using in production or development but which is usually higher
than the one that they consider achieve a satisfying performance.

Figure 17: Scaling metrics (up to 500 cores)

D5.2 POP Analysis Report
Version 1.0

19

Figure 18 focuses in the range from 500 to 1000 cores. We have included in
this plot two studies that despite they usually use a scale smaller to 1000
cores, the audit targeted up to 1536 cores. In case #3, the production and
development runs use less than 100 cores, in case #5, the production runs
are close to 900 cores. In both cases the users defined the limit for satisfied
on 1000 cores but they selected a larger scale when auditing, probably to
explore the bottlenecks on these configurations.

In this group we can see that development runs generally use very small
number of cores (except for #6) and they are satisfied with the performance of
a larger scale that the one used in production. Around half of them requested
to audit their codes at a scale larger than the one for which they are satisfied,
but the other half wanted us to focus on a shorter scale.

Figure 18: Scaling metrics (up to 1000 cores)

Figure 19 focus in the range from 1000 to 9000 cores. We can see that most
of the studies correspond to codes that use much less cores in production
than the value specified in satisfied section, for almost all of them the largest
audited run was an intermediate value. There are also a couple of cases
where the scale used in development is significantly higher than the one used
in production.

Figure 19: Scaling metrics (up to 9000 cores)

D5.2 POP Analysis Report
Version 1.0

20

Case #8 corresponds to one of these studies where the study targeted a scale
larger than all the other metrics.

Finally, Figure 20 focuses in the range from 10000 cores. Surprisingly, half of
the studies that reported us some scale larger than 10000 cores, requested us
to audit no more than 500 cores. For only two cases we audited a larger scale
than the one they are satisfied with the performance. Checking the data, we
detected that for some of these codes, the user wanted us to analyse a
different version of the code.

Figure 20: Scaling metrics (from 10000 cores)

To complement the analysis of the assessments scale we should also
consider the answer to other related questions. This includes if runs are
usually single executions or use many instances concurrently. 41% of the
responses usually run multiple executions at the same time (80 answers). The
need to execute many instances suggests reducing the scale of each run to fit
on the available resources. With respect to the platform used, 57% of the 87
codes are typically executed on the user local system that may also limit the
maximum scale they can target for their production runs. Finally, 79% of the
113 answers use strong scaling mode where the problem size is maintained
when increasing the number of resources. This approach also influences the
scale as the range of cores that make sense to use, would be determined and
limited by the input.

Comparing the scaling values with the data collected in the precursor POP
CoE project, the average number of cores is similar, while the largest scale
reported within POP was 239,615 cores and in POP2 is 309,696.

3 Efficiencies
As it was done in the predecessor POP CoE project, the first step of the
performance assessment is to identify the structure of the application and to
determine the focus of analysis (FoA), that is the relevant region(s) to focus
the analysis on, discarding for instance initialisation and finalisation phases.

D5.2 POP Analysis Report
Version 1.0

21

After selecting the FoA, we use an efficiency model to determine the loss of
performance on a small set of key factors.

The efficiency model is a hierarchy of factors and it can be split in two main
components: the contribution from the parallelisation itself (based on the time
spent in the parallel runtime and its distribution among processes/threads)
and the scaling of the computations (supporting both weak and strong scaling
approaches). While the parallel efficiency can be measured independently for
each execution, the scaling of the computations requires measuring the
application with at least two different core-counts.

The efficiencies are measured as a value between 0 and 1, the higher the
better, which can be also expressed as a percentage from 0% to 100%. An
efficiency value of 80% on a given factor means that the code is losing 20% of
the maximum performance that the factor can achieve.

Generally, inefficiencies identified in smaller scale executions tend to grow as
scales get larger. The efficiency analysis at different scales allows identifying
both the factor(s) that limits the scaling as well as the factors that reduce the
performance at all scales.

There is a lot of heterogeneity in the collected efficiency data as scales are
very arbitrary across assessments. The results are reflecting the executions
that were of more interest for the users, than the real performance that can be
achieved by the codes.

To analyse the collected efficiencies, and as it was done in the previous
deliverable, we considered five categories listed from worst to best:

- Bad. This category corresponds to values up to 60%. When a given factor
has such a low value of efficiency it is indicating severe performance
problems. The executions should be run on a lower scale or with a larger
input case, because the resources are being underutilized.

- Poor category groups values between 60% and 75%. The loss of
performance is still high. Code optimisations must ensure targeting to
improve the factors that are in this range.

- Fair is a category with efficiencies above 75% but not higher than 85%. In
this case, despite the value for the efficiency starts to be acceptable, the
factor indicates that there is still place for improvement.

- Good category groups the efficiencies in the range between 85% and
100%. Despite the assessment may still identify potential improvements,
the analysed execution achieves a commendable performance with
respect to that key factor.

- Super is the last category for percentages higher than 100%. These values
can only be seen in the computation scaling and its components. The most
frequent scenario is related with IPC improvements when increasing the
scale. That is typically the case of strong scaling mode as the work per
process is reduced and it may improve the use of the cache or reduce the
required memory bandwidth.

D5.2 POP Analysis Report
Version 1.0

22

Figure 21 plots the distribution over these categories for the main efficiency
factors measured in our studies at their largest scale (which has previously
been shown to vary dramatically). Transfer and serialization efficiency factors
have fewer occurrences reflecting the cases where they cannot be
distinguished from communication efficiency (purely multithreaded codes,
hybrid codes or codes that use accelerators). There are also cases where
tracing (required to distinguish them) wasn’t done, either because it wasn’t
possible (or practical) to do so and/or worth the extra effort/cost because the
communication efficiency from profiles was over 95%.

Figure 21: Key factor efficiencies classification

As it can be expected, global efficiency is the metric with the worst values
because it accumulates the losses from all other efficiencies. We identify a
significant number of codes with Poor or Bad values for global efficiency and
parallel efficiency.

We also confirm that the Super category only appears on the scaling metrics
and in two studies at the global efficiency level meaning that
overcompensates all the loss of the parallel efficiency.

Comparing between key factors we can infer that the main loss of
performance is related with the parallelization and it is primarily related with
global load balance and data transfer with a much lower impact of the
serialization component.

Focusing on the communication factors, we can see that the communication
efficiency has lower values than its components serialization and transfer,
suggesting that some of the codes with poor communication efficiency
correspond to the cases mentioned before where we did not differentiate
between serialization and transfer or that the combination of the two
components impacted on the communication efficiency.

Finally with respect to the computation scaling, despite the higher percentage
is classified as good or super, there are some of them with very bad scaling of
the computations with a higher contribution from the instructions scaling,
identifying applications that suffer from code replication or increase of
instructions with the scale.

D5.2 POP Analysis Report
Version 1.0

23

To validate this preliminary insight as well as to further analyse the correlation
between the metrics, in the next figures we correlate the categories of a given
key factor with the average value reported by its child metrics.

Figure 22 correlates the categories of the global efficiency metric with its
descendant’s parallel efficiency and computation scaling. We can see that for
all the categories, the parallel efficiency reports a lower value than the
computation scaling. Similar insight was collected from the previous analyses.
The Bad category is highly correlated with a low parallel efficiency (average
lower than 50%) and it is the category with the lower average computation
scaling. In all the other categories the scaling of the computation is close to
100% or higher compensating the loss due to the parallel runtime.
Interestingly, for the two cases classified as Super, the average parallel
efficiency is lower than the average value for the Good category. One of these
cases corresponds to a parallelization from GPUs to CPUs that produced a
drastic reduction of the computation time.

Figure 22: Global efficiency analysis

Figure 23 correlates the parallel efficiency with load balance and
communication efficiencies. In this case the two metrics seems to have very
similar impact on the parallel efficiency. The biggest difference is on the Bad
category where the communications have a lower average value (59% vs.
70%). We can intuitively suspect that the correlation with the communications
efficiency is higher because the codes classified in the Good category have
average communication efficiency higher than their load balance efficiency.

In general, codes with more load balancing problems have a better parallel
efficiency, while when the communications degrade more than the imbalance,
the penalty for the parallel efficiency is higher. Part of this effect can be
caused by the fact that the communication efficiency is accumulating the
impact of two key factors as we will see on the next figure. This is the same
situation we reported in D5.1 but it is just the opposite insight identified in the

D5.2 POP Analysis Report
Version 1.0

24

first POP CoE project where imbalance problems had a higher penalty on the
parallel efficiency.

Figure 23: Parallel efficiency analysis

Figure 24 analyses the communication efficiency and its components transfer
and serialization. Again, the two child metrics seem to have a very similar
impact on the communication efficiency except for the Bad category where the
transfer efficiency is significantly lower (65% vs. 74%). We can also see that
the serialization efficiency reports “good” values in all the communication
efficiency categories with average values from 74% to 97%. A similar insight
about the weight of the components was collected in POP CoE project despite
the fact that we also had few codes with severe serialization problems that
had the lowest values of communication efficiency.

D5.2 POP Analysis Report
Version 1.0

25

Figure 24: Communication efficiency analysis

Lastly, Figure 25 analyses the scaling of the computations and its correlation
with the scaling of both instructions and IPC. In all the categories the
instructions scaling seems to have a higher influence in the computation
scaling. That seems reasonable as the increase of scale may also increase
the number of instructions due to some code replication while, as we
mentioned before, IPC may benefit from scale increasing when using strong
scaling. In fact, the two higher categories (Good and Super) are showing that
effect as the IPC scaling efficiencies are higher than 100%.

On the other extreme, the scaling analysis for pure OpenMP codes (or in
general thread-based codes) is limited to a single shared-memory compute
node. Increasing the load of the node (and the load of its sockets) is typically
reflected as a reduction of the IPC due to the sharing of resources within a
socket. That may explain the behaviour identified in the Poor category.

Focusing on the instructions scaling, the Bad and Poor categories have an
average value of 70% and 75% respectively all other categories report quite
good efficiencies from 89% to 98%. That seems to indicate the problem of
code replication usually is not very severe or even acceptable.

D5.2 POP Analysis Report
Version 1.0

26

Figure 25: Computation scaling analysis

A third analysis of the efficiencies was done focusing on the top 10 codes with
highest global efficiency and the ones with highest parallel efficiency. First
thing we can see is that half of the codes are common to both lists. The
number of cores goes from few tens to close to twenty thousand, and we do
not detect any correlation. Comparing the average value for the parallel
efficiency and its child metrics for both sets, the numbers are quite close being
lower for the top 10 global efficiency codes. The biggest difference is for
parallel efficiency (as it accumulates all their child differences) going down
from 94.9% to 88.3% when we focus on the higher global efficiency. But as
expected, the main difference is reflected on the computational scaling with a
huge difference that compensates the lower parallel efficiency going up from
80.8% to 130.8%. Maybe not so expected, for half of the studies the
instruction scaling is higher than the IPC scaling. Based on that comparison,
we may infer that to achieve a good scaling it is not only important to work on
a good parallelization but even more important to guarantee that there is no
code replication and that we can benefit from some IPC improvement when
increasing the scale.

We have done a similar analysis with the studies with lowest efficiencies. In
this scenario differences are bigger despite six studies are common to both
lists. Starting with the number of cores, 40% of the applications with lower
scores for global efficiency were analysed with less than 100 cores, while
most of the runs with lower parallel efficiency were assessed with a range
from one thousand to ten thousand cores. The applications with lower global
efficiency that do not have a very low parallel efficiency use to suffer severe
problems of code replication except one case where the problems where on a
reduction of IPC. Two of the codes also had a bad parallel efficiency while the
other two had a parallel efficiency of 70% and 89%. Looking at the codes with
worst parallel efficiency, most of them suffer communications problems
confirming the insight obtained analysing Figure 23.

D5.2 POP Analysis Report
Version 1.0

27

4. Findings and recommendations
This section has the goal to characterize the feedback and insight provided by
the assessment studies based on the main findings and recommendations
suggested as a result of the study. In many cases, when the measurement did
not provide the relevant performance data, the recommendation was to
investigate further the detected aspect(s). For that reason, and as the
previous deliverable already reported globally on the feedback provided in the
assessments (most of them were first audit), this deliverable focuses on the
insight from the 24 follow-on activities that have been completed during the 3
years of POP2.

Most of the follow-on studies have the goal to analyse a new code version. In
many cases that new version was a result of the feedback from a previous
assessment. The improvement obtained not only depends on the complexity
of the code and its initial performance, but also on the time and effort
dedicated by the code owner to implement the improvements. And while some
users wanted a quick evaluation after short term modifications, other users
prefer to dedicate more time before asking for the second analysis. For those
reasons, the improvement goes from a non-negligible 15-20% time reduction
in the iterative part to a 2x or 3x improvement. In a high percentage of cases
the goal was to improve the scaling with an impact that is more difficult to
quantify with a single number. The code improvements that the users
implemented faced many different aspects, the most frequent are: work
distribution, code granularity, overlapping of computations and
communications, parallelization of serial phases, changes in the MPI
primitives or changes in the OpenMP scheduling.

Some follow-on studies targeted to analyse the performance on a different
platform than the initial audit and in some cases combined with a new version
of the code. The most frequent scenario has been to evaluate a new version
with GPUs support. In general, for all the studies, during the last year we have
seen a significant increase in the number of requests to analyse applications
using GPUs. As an example of this trend, during the first ChEESE campaign
only one GPU code was analysed, while in the second campaign more than
half of the codes were assessed for a GPU platform. The most frequent
sources of inefficiencies in GPU based codes are related with: the
serialization between the MPI communications (or some CPU computation)
and the kernels execution, the ratio between the memory copy and the kernel
execution when the scale is increased, and the waste of the CPUs for most of
the execution.

Finally, the third scenario for the follow-on assessments is to analyse a
different set-up, to compare different code versions or to investigate what is
the best number of OpenMP threads for each MPI rank. Due to the diversity of
the studies, it is not possible to identify relevant common aspects that
characterize them with respect to the previous sets.

Focusing on the findings for the follow-on assessments and considering the
24 studies, we can see that as it was reported in the previous deliverable, the
two most frequent topics correspond to load balance and computation scaling
while problems of file I/O are much less frequent in the follow-on studies.

D5.2 POP Analysis Report
Version 1.0

28

With respect to the IPC, in a significant percentage of the studies the analysis
identified that the improvement on the IPC scaling was compensating the loss
experienced in other efficiency metric (like instructions scaling or transfer
efficiency). But there is not a common trend on the IPC evolution with respect
to the initial study, in some follow-on assessments we can find cases where
the IPC is worse than in the previous study while in others it is improved.

It is important to remark the impact in the performance achieved caused by
external factors like the NUMA effect or the system noise that use to be
ignored when programming and running a parallel code

5. Assessing CoEs applications
One of the goals that it is common to all the HPC CoEs is to move toward
Exascale. The collaboration between CoEs facilitates the path to Exascale,
and in the case of POP we can help other CoEs to understand the
performance, scaling and bottlenecks of their codes, while the CoEs bring us
the possibility to analyse codes ready to run at a larger scale.

As reported in the previous deliverable during the first year of POP2 we
contacted all the CoEs to offer them assessment campaigns to audit their
codes. The two options offered were periodic assessments of their codes
and/or workshops to introduce them to the tools we are using and to support
them applying the POP methodology to their codes. On that period, only the
ChEESE CoE requested us to have an initial POP campaign, whereas other
CoEs (ESiWACE, CompBioMed and EXCELLERAT) requested assessments
of codes on a more ad hoc basis. EoCoE-II preferred to continue with the
workshops initiative started in the framework of the initial POP and EoCoE
projects. E-CAM also requested our participation at one of their training
events.

During the second year and a half, the collaboration with other CoEs has been
increased including multiple assessments' campaigns. We already completed
a second campaign for ChEESE to evaluate the impact of the improvements
(many of them based on our previous feedback) and a first campaign for
CoEC. We are currently working on a campaign for NOMAD2 and we have
agreed to schedule a campaign for MAX that will start before the end of the
year. Additionally, we continued with isolated requests of code assessments
to other CoEs. Finally, due to the Covid-19 there has been a significant
reduction of training workshops (details are reported as dissemination).

Figure 26, presents the number of studies done to the different CoEs. We can
see that the top 3 correspond to the CoEs for which we performed or we are
performing an assessment campaign.

D5.2 POP Analysis Report
Version 1.0

29

Figure 26: Assessments to CoEs

To provide more details, Table 1 lists the codes from other CoEs that have
been analysed or are being analysed by POP2. In parentheses we include the
number of studies per code.

CoE Codes (#assesments)
ChEESE ASHEE (3), ExaHYPE (1), FALL3D (3), Landslide-HySEA(*),

PARODY_PDAF (1), Salvus (3), SeiSol (3), specfem3D (3),
Tsunami-HySEA (2), xshells (2)

CoEC Alya (1), AVBP (1), CIAO (1), CLIO (1), Disco (1), Nek5000 (2),
OpenFOAM (1), YALES2 (1)

NOMAD ABINIT, exciting, FHI-aims, GPAW (2)

CompBioMed Dealampps (1), HemeLB (2)
ESiWACE IFS (2), NEMO (1)

EXCELLERAT Alya (1), AVBP (1), Nek5000 (1)

E-CAM CP2K (1)
EoCoE 1D-NEGF

MAX BigDFT

PerMedCoE PhysyCell
Table 1: List of CoE codes assessed

The study of Landslide-HySEA was cancelled because it shares the core
computation with Tsunami-HySEA and they considered the insight provided
for that code was directly applicable to the first one.

Looking at the table we can detect three codes that have been analysed
within the scope of two different CoEs: Alya, AVBP and Nek5000, reflecting
the fact that there are multiple codes that belong to more than one CoE.

Without considering the analysis of the same code for different CoEs as
follow-on activities because the user is different, we can see that close to half
of the 30 codes analysed have multiple assessments: two assessments have
been done for 27% of the codes, and a total of three studies for 20% of the
codes. Those ratios are higher than the average value for POP2

D5.2 POP Analysis Report
Version 1.0

30

assessments, indicating the usefulness of the insight provided by the POP
studies to the CoEs.

To measure the impact of other CoEs in the scale of POP2 studies, we
compared the average and maximum core counts grouping the studies in two
sets: the assessments to CoEs codes and all the other studies. Figure 27
plots these values (in logarithmic scale) confirming that the assessments to
CoEs' codes have a significantly larger scale. The average number of cores is
close to 14x with respect to the requests that are not from the CoEs, and the
maximum value is 25x bigger when we focus on the CoEs assessments.
Comparing the average number of cores of all the studies with respect to the
average size without the CoEs studies, there is an increase close to 5x
reflecting the relevant weight of the studies for CoEs. In fact, close to one third
of the studies carried out by POP2 correspond to studies to other CoEs. The
increase on the scale can be explained not only because CoEs goal is to run
on larger scales but also that CoEs have easily access to large computing
systems.

Figure 27: Comparing the scale of CoEs studies (logarithmic)

D5.2 POP Analysis Report
Version 1.0

31

Acronyms and Abbreviations

- BSC – Barcelona Supercomputing Center
- D – deliverable
- FoA – Focus of Analysis
- HLRS – High Performance Computing Centre (University of Stuttgart)
- HPC – High Performance Computing
- IT4I - Vysoka Skola Banska - Technicka Univerzita Ostrava
- Juelich – Forschungszentrum Juelich GmbH
- KPI – Key Performance Indicator
- M – Month
- MS – Milestones
- POP – Performance Optimization and Productivity
- RWTH Aachen – Rheinisch-Westfaelische Technische Hochschule

Aachen
- USTUTT (HLRS) – University of Stuttgart
- UVSQ - Université de Versailles Saint-Quentin-en-Yvelines
- WP – Work Package

D5.2 POP Analysis Report
Version 1.0

32

List of Figures
Figure 1: POP2 Performance assessments evolution ... 6
Figure 2: Distribution of the POP2 Performance assessments 7
Figure 3: POP2 Performance assessments per partner .. 8
Figure 4: POP2 Studies (WP5+WP6) .. 9
Figure 5: User role ... 10
Figure 6: Service request ... 11
Figure 7: Source of contacts .. 11
Figure 8: Code scientific/technical area ... 12
Figure 9: Code profile .. 13
Figure 10: Code license ... 13
Figure 11: Parallel programming model .. 14
Figure 12: Programming model per scientific area .. 15
Figure 13: Programming language... 16
Figure 14: Programming language per scientific area ... 16
Figure 15: Scales comparison .. 17
Figure 16: Scaling metrics ... ¡Error! Marcador no definido.
Figure 17: Scaling metrics (up to 500 cores) ... 18
Figure 18: Scaling metrics (up to 1000 cores) ... 19
Figure 19: Scaling metrics (up to 9000 cores) ... 19
Figure 20: Scaling metrics (from 10000 cores) ... 20
Figure 21: Key factor efficiencies classification ... 22
Figure 22: Global efficiency analysis .. 23
Figure 23: Parallel efficiency analysis ... 24
Figure 24: Communication efficiency analysis ... 25
Figure 25: Computation scaling analysis ... 26
Figure 26: Assessments to CoEs .. 29
Figure 27: Comparing the scale of CoEs studies (logarithmic) 30

	Executive Summary
	1. Introduction
	2. Performance Assessments Evolvement
	3. Performance Assessments Analysis
	1 User request
	2 Code
	2.1 Code Programming
	2.2 Code Scaling

	3 Efficiencies

	4. Findings and recommendations
	5. Assessing CoEs applications
	Acronyms and Abbreviations
	List of Figures

