
27th POP Webinar

2024-05-28 I Jan André Reuter

Performance Analysis of OpenMP Target Offloading in Score-P

AGENDA

• What is the Score-P infrastructure?
• The OpenMP Tools Interface and our support of it
• OpenMP and offloading
• Handling offloading events on the host
• Handling offloading events from accelerators
• Results
• What if my runtime has only limited support?
• Final words

2024/05/28 Slide 2

WHAT IS SCORE-P?

• Score-P is a highly scalable instrumentation tool
• Support for multi-process, thread-parallel and

accelerator-based paradigms
• Support for additional metrics (I/O, HW

counters, …)
• Flexible measurement without re-compilation:

• Profile generation (CUBE4 .cubex format)
• Event trace recording (OTF2 format)

• Support for C, C++, Fortran and Python

2024/05/28 Slide 3

The Score-P instrumentation and measurement infrastructure

INSTRUMENTING APPLICATIONS

2024/05/28 Slide 4

A very high level overview on how to use Score-P

Build systems like CMake
may need additional steps.
See scorep-wrapper
--help for more info.

More information

VIEW YOUR RESULTS

2024/05/28 Slide 5

A short look at Cube and Vampir

● Open source viewer for .cubex profiles

● More information:
https://www.scalasca.org/scalasca/software/cube-4.x/

● Commercial viewer for .otf2 traces

● More information:
https://vampir.eu

OPENMP SUPPORT IN SCORE-P

2024/05/28 Slide 6

Two ways to collect information about OpenMP

● Source-to-source instrumentation tool

● Independent from compiler used

● Instrumentation up to OpenMP 3.x

● Various limitations

○ Code sometimes has to be prepared

for OPARI2

OPENMP SUPPORT IN SCORE-P

2024/05/28 Slide 7

Two ways to collect information about OpenMP

● Source-to-source instrumentation tool

● Independent from compiler used

● Instrumentation up to OpenMP 3.x

● Various limitations

○ Code sometimes has to be prepared

for OPARI2

OpenMP Tools Interface
● Standardised tool interface since

OpenMP 5.0

● Enables development of tools using any

implementation of the OpenMP API

● Support for the latest and greatest

OpenMP features

● Continuously expanded with new

versions

WHAT IS THE OPENMP TOOLS INTERFACE?

• Interface for first-party tools, linked or loaded into the OpenMP program

• Defined by the OpenMP standard, implemented by OpenMP runtimes
• Tools have to implement functions to interact with OMPT (e.g. ompt_start_tool)
• One interaction method: callbacks, invoked for runtime events

2024/05/28 Slide 8

$ clang -fopenmp my-program.c -lmy-tool
$ clang -fopenmp my-program.c my-tool.c
$ OMP_TOOL_LIBRARIES=my-tool.so ./my-program

OPENMP TOOLS INTERFACE CALLBACKS

int main(void)

{

 const int N = 100;

 #pragma omp parallel for

 for(int i = 0; i < N; ++i)

 {

 // Some code...

 }

 return 0;

}

2024/05/28 Slide 9

Just a part of what tools see for user code

● Tools receive a lot of
events for user code

● With this, we are able
to record events for
OpenMP directives

SCORE-P AND OMPT: THE PRESENT …

• First support in version 8.0 (released in December 2022)

• Selectable via scorep --thread=omp:ompt

• Support tried to match the available features in OPARI2

(focused on OpenMP 3.x)

• Small feature additions and several bug fixes in 8.x:

• Recording loop schedules

• Recording omp_test_lock events

2024/05/28 Slide 10

OpenMP directive Support

OpenMP 3.x yes

cancel no

task depend no

task detach no

taskgroup yes

taskloop no

teams no

scope no

… AND THE FUTURE (V9.0)

• Current OpenMP features planned for Score-P v9.0

• Improvements to support of task directives

2024/05/28 Slide 11

#include <stdio.h>

void foo() {
 int x = 0, y = 2;
 #pragma omp task depend(inout: x) shared(x)
 x++; // 1st child task
 #pragma omp task shared(y)
 y--; // 2nd child task
 #pragma omp taskwait depend(in: x) // 1st taskwait
 printf("x=%d\n", x);
 #pragma omp taskwait // 2nd taskwait
 printf("y=%d\n", y);
}

int main() {
 #pragma omp parallel
 #pragma omp single
 foo();
 return 0;
}

OpenMP directive Support

OpenMP 3.x yes

cancel partial

task depend partial

task detach yes

taskgroup yes

taskloop yes

teams yes

scope no

… AND THE FUTURE (V9.0)

• Current OpenMP features planned for Score-P v9.0

• Improvements to support of task directives

• Improved support for cancel directive

2024/05/28 Slide 12

#include <omp.h>

int main(void)

{

 if(!omp_get_cancellation()) return 1;

 int cancelled = 0;

 #pragma omp parallel

 {

 if(omp_get_thread_num() == 0)

 {

 cancelled = 1;

 #pragma omp cancel parallel

 }

 #pragma omp cancellation point parallel

 // Do some very long calculation, if region is not cancelled

 }

 return cancelled ? 0 : 1;

}

OpenMP directive Support

OpenMP 3.x yes

cancel partial

task depend partial

task detach yes

taskgroup yes

taskloop yes

teams yes

scope no

… AND THE FUTURE (V9.0)

• Current OpenMP features planned for Score-P v9.0

• Improvements to support of task directives

• Improved support for cancel directive

• Support for teams directive

2024/05/28 Slide 13

int main(void)
{
 int sum = 0;

 #pragma omp teams num_teams(4)
 #pragma omp distribute parallel for num_threads(2) reduction(+: sum)
 for(int i = 0; i < 100; ++i)
 {
 sum++;
 }

 return sum == 100 ? 0 : 1;
}

OpenMP directive Support

OpenMP 3.x yes

cancel partial

task depend partial

task detach yes

taskgroup yes

taskloop yes

teams yes

scope no

… AND THE FUTURE (V9.0)

• Current OpenMP features planned for Score-P v9.0

• Improvements to support of task directives

• Improved support for cancel directive

• Support for teams directive

• Recording of reduction clause

2024/05/28 Slide 14

PROGRAM REDUCTION3

 N = 0

 !$OMP PARALLEL DO REDUCTION(+: N)

 DO I = 1, 100

 N = N + I

 END DO

 WRITE (*,*) N

END PROGRAM REDUCTION3

OpenMP directive Support

OpenMP 3.x yes

cancel partial

task depend partial

task detach yes

taskgroup yes

taskloop yes

teams yes

scope no

COMPILER SUPPORT FOR OMPT

• OpenMP runtimes have to implement the tools interface

• However, runtimes may have bugs or features not

fully implemented

• We test the OpenMP runtime during configuration to

prepare for known issues

2024/05/28 Slide 15

We do have strict requirements

NVHPC 24.5 oneAPI 2024.1

CCE 16.0.1

RIGOROUS TESTING

• Large internal test suite, based on OpenMP examples and additional smoke tests
• Score-P is regularly tested with GCC, LLVM/Clang, NVHPC, ROCm & oneAPI
• Allows easy testing of new compilers as soon as they release

• NVHPC 24.5, released on May 22nd, did show differences in runtime for example
• Contributed to several bug reports to compiler vendors (~65 bugs since Dec. 2022)

and workarounds in Score-P

2024/05/28 Slide 16

Ensuring that Score-P is able to work with compiler runtimes

C C++ Fortran

Host Examples 138 7 165

Offload Examples 63 6 63

Teams Smoke Tests 30 0 0

General Smoke Tests 42 4 0

HOW TO HANDLE OFFLOADING TO ACCELERATORS?

OFFLOADING WORK TO ACCELERATORS

• OpenMP introduced target directives in OpenMP 4.0
• Expanded in later spec. versions, including functions

like omp_target_alloc

2024/05/28 Slide 18

What is offloading in OpenMP?

More information:
void saxpy() {

 float a, x[SZ], y[SZ];

 double t = 0.0;

 double tb, te;

 tb = omp_get_wtime();

 #pragma omp target

 for(int i = 0; i < SZ; ++i) {

 y[i] = a * x[i] + y[i];

 }

 te = omp_get_wtime();

 t = te - tb;

 printf("Time of kernel: %lf\n", t);

}

host
host

target

OFFLOADING WORK TO ACCELERATORS

2024/05/28 Slide 19

Splitting data transfers and kernels

More information:

void saxpy(float a, float* x, float* y, int n) {

 #pragma omp target teams distribute parallel for

 for(int i = 0; i < n; ++i) {

 y[i] = a * x[i] + y[i];

 }

}

void vecadd(float* x, float* y, float* data_out, int n)

{

 #pragma omp target teams distribute parallel for

 for(int i = 0; i < n; ++i) {

 data_out[i] = x[i] + y[i];

 }

}

void example() {

 float a, x[N], y[N], b[N], data_out[N];

 #pragma omp target data map (to: x[:N], y[:N], b[:N], a) \

 map(from: data_out[:N])

 {

 saxpy(a, x, y, N);

 vecadd(y, b, data_out, N);

 }

}

Simple optimizations:
● Reduce numbers of

data transfers

● Reuse data, if
possible

● Transfer data
beforehand, maybe
asynchronously

ACCELERATOR EVENTS AND TOOLS

• Unlike host directives, offloading needs to be handled twice to get all information
i. Host side dispatching events and waiting for completion
ii. Accelerator actually handling the event

2024/05/28 Slide 20

void saxpy() {

 float a, x[SZ], y[SZ];

 double t = 0.0;

 double tb, te;

 tb = omp_get_wtime();

 #pragma omp target

 for(int i = 0; i < SZ; ++i) {

 y[i] = a * x[i] + y[i];

 }

 te = omp_get_wtime();

 t = te - tb;

 printf("Time of kernel: %lf\n", t);

}

host
host

target

Enter: void saxpy()

Enter: !$omp target
Enter: !$omp target data op

Exit: !$omp target data op
Enter: !$omp target submit kernel

Exit: !$omp target submit kernel
Enter: !$omp target data op

Exit: !$omp target data op
Exit: !$omp target

Exit: void saxpy()

Record: !$omp target data op

Record: !$omp target kernel

Record: !$omp target data op

Tool: Host

Tool: Accelerator

ACCELERATOR EVENTS AND TOOLS

• Unlike host directives, offloading needs to be handled twice to get all information
i. Host side dispatching events and waiting for completion
ii. Accelerator actually handling the event

2024/05/28 Slide 21

void saxpy() {

 float a, x[SZ], y[SZ];

 double t = 0.0;

 double tb, te;

 tb = omp_get_wtime();

 #pragma omp target

 for(int i = 0; i < SZ; ++i) {

 y[i] = a * x[i] + y[i];

 }

 te = omp_get_wtime();

 t = te - tb;

 printf("Time of kernel: %lf\n", t);

}

host
host

target

Enter: void saxpy()

Enter: !$omp target
Enter: !$omp target data op

Exit: !$omp target data op
Enter: !$omp target submit kernel

Exit: !$omp target submit kernel
Enter: !$omp target data op

Exit: !$omp target data op
Exit: !$omp target

Exit: void saxpy()

Record: !$omp target data op

Record: !$omp target kernel

Record: !$omp target data op

Tool: Host

Tool: Accelerator

TARGET DIRECTIVES AND CALLBACKS

• Host side events are similar to existing
ones (e.g. parallel_begin)

• We receive one begin and end event for
the following scenarios:

• target directives
• data transfers
• submit of a kernel

• This includes directives and function calls

2024/05/28 Slide 22

TARGET DIRECTIVES AND CALLBACKS

2024/05/28 Slide 23

Getting more into the details

typedef void (*ompt_callback_target_emi_t) (
 ompt_target_t kind,
 ompt_scope_endpoint_t endpoint,
 int device_num,
 ompt_data_t* task_data,
 ompt_data_t* target_task_data,
 ompt_data_t* target_data,
 const void* codeptr_ra);

typedef void (*ompt_callback_target_data_op_emi) (
 ompt_scope_endpoint_t endpoint,
 ompt_data_t* target_task_data,
 ompt_data_t* target_data,
 ompt_id_t* host_op_id,
 ompt_target_data_op_t optype,
 void* src_addr,
 int src_device_num,
 void* dest_addr,
 int dest_device_num,
 size_t bytes,
 const void* codeptr_ra);

typedef void (*ompt_callback_submit_emi) (
 ompt_scope_endpoint_t endpoint,
 ompt_data_t* target_data,
 ompt_id_t* host_op_id,
 unsigned int requested_num_teams);

● Three callbacks, giving us the important information

TARGET DIRECTIVES AND CALLBACKS

2024/05/28 Slide 24

Getting more into the details

typedef void (*ompt_callback_target_emi_t) (
 ompt_target_t kind,
 ompt_scope_endpoint_t endpoint,
 int device_num,
 ompt_data_t* task_data,
 ompt_data_t* target_task_data,
 ompt_data_t* target_data,
 const void* codeptr_ra);

typedef void (*ompt_callback_target_data_op_emi) (
 ompt_scope_endpoint_t endpoint,
 ompt_data_t* target_task_data,
 ompt_data_t* target_data,
 ompt_id_t* host_op_id,
 ompt_target_data_op_t optype,
 void* src_addr,
 int src_device_num,
 void* dest_addr,
 int dest_device_num,
 size_t bytes,
 const void* codeptr_ra);

typedef void (*ompt_callback_submit_emi) (
 ompt_scope_endpoint_t endpoint,
 ompt_data_t* target_data,
 ompt_id_t* host_op_id,
 unsigned int requested_num_teams);

● Three callbacks, giving us the important information
● Start / end of the operation

TARGET DIRECTIVES AND CALLBACKS

2024/05/28 Slide 25

Getting more into the details

typedef void (*ompt_callback_target_emi_t) (
 ompt_target_t kind,
 ompt_scope_endpoint_t endpoint,
 int device_num,
 ompt_data_t* task_data,
 ompt_data_t* target_task_data,
 ompt_data_t* target_data,
 const void* codeptr_ra);

typedef void (*ompt_callback_target_data_op_emi) (
 ompt_scope_endpoint_t endpoint,
 ompt_data_t* target_task_data,
 ompt_data_t* target_data,
 ompt_id_t* host_op_id,
 ompt_target_data_op_t optype,
 void* src_addr,
 int src_device_num,
 void* dest_addr,
 int dest_device_num,
 size_t bytes,
 const void* codeptr_ra);

typedef void (*ompt_callback_submit_emi) (
 ompt_scope_endpoint_t endpoint,
 ompt_data_t* target_data,
 ompt_id_t* host_op_id,
 unsigned int requested_num_teams);

● Three callbacks, giving us the important information
● Start / end of the operation
● Information about what exactly is done

TARGET DIRECTIVES AND CALLBACKS

2024/05/28 Slide 26

Getting more into the details

typedef void (*ompt_callback_target_emi_t) (
 ompt_target_t kind,
 ompt_scope_endpoint_t endpoint,
 int device_num,
 ompt_data_t* task_data,
 ompt_data_t* target_task_data,
 ompt_data_t* target_data,
 const void* codeptr_ra);

typedef void (*ompt_callback_target_data_op_emi) (
 ompt_scope_endpoint_t endpoint,
 ompt_data_t* target_task_data,
 ompt_data_t* target_data,
 ompt_id_t* host_op_id,
 ompt_target_data_op_t optype,
 void* src_addr,
 int src_device_num,
 void* dest_addr,
 int dest_device_num,
 size_t bytes,
 const void* codeptr_ra);

typedef void (*ompt_callback_submit_emi) (
 ompt_scope_endpoint_t endpoint,
 ompt_data_t* target_data,
 ompt_id_t* host_op_id,
 unsigned int requested_num_teams);

● Three callbacks, giving us the important information
● Start / end of the operation
● Information about what exactly is done
● Source code position

TARGET DIRECTIVES AND CALLBACKS

2024/05/28 Slide 27

Getting more into the details

typedef void (*ompt_callback_target_emi_t) (
 ompt_target_t kind,
 ompt_scope_endpoint_t endpoint,
 int device_num,
 ompt_data_t* task_data,
 ompt_data_t* target_task_data,
 ompt_data_t* target_data,
 const void* codeptr_ra);

typedef void (*ompt_callback_target_data_op_emi) (
 ompt_scope_endpoint_t endpoint,
 ompt_data_t* target_task_data,
 ompt_data_t* target_data,
 ompt_id_t* host_op_id,
 ompt_target_data_op_t optype,
 void* src_addr,
 int src_device_num,
 void* dest_addr,
 int dest_device_num,
 size_t bytes,
 const void* codeptr_ra);

typedef void (*ompt_callback_submit_emi) (
 ompt_scope_endpoint_t endpoint,
 ompt_data_t* target_data,
 ompt_id_t* host_op_id,
 unsigned int requested_num_teams);

● Three callbacks, giving us the important information
● Start / end of the operation
● Information about what exactly is done
● Source code position
● Unique information per target region and operation

CORRELATION OF EVENTS

• We do need to correlate two things:
• Host callbacks between each other
• Host callbacks to accelerator events

• Done via target_data and host_op_id
• What needs to be transferred?

2024/05/28 Slide 28

typedef void (*ompt_callback_submit_emi) (
 ompt_scope_endpoint_t endpoint,
 ompt_data_t* target_data,
 ompt_id_t* host_op_id,
 unsigned int requested_num_teams);

CORRELATION OF EVENTS

• We do need to correlate two things:
• Host callbacks between each other
• Host callbacks to accelerator events

• Done via target_data and host_op_id
• What needs to be transferred?

2024/05/28 Slide 29

typedef void (*ompt_callback_submit_emi) (
 ompt_scope_endpoint_t endpoint,
 ompt_data_t* target_data,
 ompt_id_t* host_op_id,
 unsigned int requested_num_teams);

typedef struct scorep_ompt_target_data_t {
 const void* codeptr_ra;
 ompt_id_t target_id;
 bool supports_device_tracing;
} scorep_ompt_target_data;

CORRELATION OF EVENTS

• We do need to correlate two things:
• Host callbacks between each other
• Host callbacks to accelerator events

• Done via target_data and host_op_id
• What needs to be transferred?

2024/05/28 Slide 30

typedef void (*ompt_callback_submit_emi) (
 ompt_scope_endpoint_t endpoint,
 ompt_data_t* target_data,
 ompt_id_t* host_op_id,
 unsigned int requested_num_teams);

typedef struct scorep_ompt_target_data_t {
 const void* codeptr_ra;
 ompt_id_t target_id;
 bool supports_device_tracing;
} scorep_ompt_target_data;

/* Use the following 64-bit layout for mapping host_op_id:
 * --
 * 00000000 00000000 00000000 | 00000000 00000000 00000000 00000000 00000000
 * hostLocationId | hostOpId
 * --
 */

ACCELERATOR EVENTS AND TOOLS

• Unlike host directives, offloading needs to be handled twice to get all information
i. Host side dispatching events and waiting for completion
ii. Accelerator actually handling the event

2024/05/28 Slide 31

void saxpy() {

 float a, x[SZ], y[SZ];

 double t = 0.0;

 double tb, te;

 tb = omp_get_wtime();

 #pragma omp target

 for(int i = 0; i < SZ; ++i) {

 y[i] = a * x[i] + y[i];

 }

 te = omp_get_wtime();

 t = te - tb;

 printf("Time of kernel: %lf\n", t);

}

host
host

target

Enter: void saxpy()

Enter: !$omp target
Enter: !$omp target data op

Exit: !$omp target data op
Enter: !$omp target submit kernel

Exit: !$omp target submit kernel
Enter: !$omp target data op

Exit: !$omp target data op
Exit: !$omp target

Exit: void saxpy()

Record: !$omp target data op

Record: !$omp target kernel

Record: !$omp target data op

Tool: Host

Tool: Accelerator

THE DEVICE TRACING INTERFACE

• Buffer-based handling of accelerator events (similar to CUPTI,
rocTracer)

• When a device is initialized, we can enable this interface
• Runtime will ask for buffers, record events, flush full buffers

What tools need to do:
• Sort buffers, as runtimes are not required to sort buffer
• Convert timestamps, either manually or via
ompt_translate_time

• Iterate through buffer and write events

2024/05/28 Slide 32

What is it?

THE DEVICE TRACING INTERFACE

2024/05/28 Slide 33

What does a record contain?

typedef struct ompt_record_ompt_t {
 ompt_callbacks_t type;
 ompt_device_time_t time;
 ompt_id_t thread_id;
 ompt_id_t target_id;
 union {
 [...]
 ompt_record_target_t target;
 ompt_record_target_data_op_t target_data_op;
 ompt_record_target_kernel_t target_kernel;
 } record;
} ompt_record_ompt_t;

● Each record contains:
○ What type of event is recorded
○ When the record was recorded
○ Which thread recorded the record
○ The mapped target_data of the tool
○ The actual record of the callback

● Actual records may contain more information,
like end timestamp and our set host_op_id

typedef struct ompt_record_target_kernel_t {
 ompt_id_t host_op_id;
 unsigned int requested_num_teams;
 unsigned int granted_num_teams;
 ompt_device_time_t end_time;
} ompt_record_target_kernel_t;

BRINGING BOTH TOGETHER

2024/05/28 Slide 34

What can we record with callbacks and the device tracing interface?

typedef struct ompt_record_ompt_t {
 ompt_callbacks_t type;
 ompt_device_time_t time;
 ompt_id_t thread_id;
 ompt_id_t target_id;
 union {
 [...]
 ompt_record_target_t target;
 ompt_record_target_data_op_t target_data_op;
 ompt_record_target_kernel_t target_kernel;
 } record;
} ompt_record_ompt_t;

typedef struct ompt_record_target_kernel_t {
 ompt_id_t host_op_id;
 unsigned int requested_num_teams;
 unsigned int granted_num_teams;
 ompt_device_time_t end_time;
} ompt_record_target_kernel_t;

typedef void (*ompt_callback_target_emi_t) (
 ompt_target_t kind,
 ompt_scope_endpoint_t endpoint,
 int device_num,
 ompt_data_t* task_data,
 ompt_data_t* target_task_data,
 ompt_data_t* target_data,
 const void* codeptr_ra);

typedef void (*ompt_callback_submit_emi) (
 ompt_scope_endpoint_t endpoint,
 ompt_data_t* target_data,
 ompt_id_t* host_op_id,
 unsigned int requested_num_teams);

HOW DO I USE THE NEW FEATURES?

HOW TO USE THE NEW FEATURES?

• The OpenMP Tools Interface will be the default
with Score-P v9.0

• Example:

• If device tracing cannot be activated, a message is shown

2024/05/28 Slide 36

There are no additional steps needed!
#include <stdio.h>
#include <omp.h>
#define SZ 1000

void init(float* arr, size_t size) {
 for(int i = 0; i < size; ++i) {
 arr[i] = i;
 }
}

void saxpy() {
 float a = 2.0f, x[SZ], y[SZ];
 double t = 0.0;
 double tb, te;
 tb = omp_get_wtime();
 #pragma omp target
 for(int i = 0; i < SZ; ++i) {
 y[i] = a * x[i] + y[i];
 }
 te = omp_get_wtime();
 t = te - tb;
 printf("Time of kernel: %lf\n", t);
}

int main(void) {
 saxpy();
}

RESULTS: LETS START SMALL …

2024/05/28 Slide 37

… INCREASE THE COMPLEXITY …

2024/05/28 Slide 38

Initial data transfers

Init. data on host

● Jacobi example
used in Score-P
testing

● System info:
○ Ubuntu 22.04
○ ROCm 6.1.0
○ RX 7700 XT

… AND SCALE IT UP!

2024/05/28 Slide 39

Running the SPEC HPC tealeaf benchmark on multiple LUMI-G nodes

● Measurement on 2 LUMI-G nodes
with 4x MI250X each

● Compiler: AOMP 18.0-1, Cray MPI

LIMITATIONS

• The device tracing interface doesn’t give us
any information about the low-level stream
for any event

• To handle overlapping events, we create
OpenMP virtual streams

• May lead to more OpenMP virtual streams
than actually created by runtime

2024/05/28 Slide 40

The OpenMP Tools Interface only offers so much… (as of spec. 5.2)

#define N 10000
#include <stdlib.h>
#include <unistd.h>
#include <omp.h>
int main(void)
{
 #pragma omp parallel
 {
 size_t* sum = malloc(sizeof(size_t) * N);
 #pragma omp target teams \
 distribute parallel for simd \
 map(tofrom: sum[:N])
 for(size_t i = 0; i < N; ++i)
 {
 sum[i] = i;
 }
 free(sum);
 }
}

LIMITATIONS

• The device tracing interface doesn’t give us
any information about the low-level stream
for any event

• To handle overlapping events, we create
OpenMP virtual streams

• May lead to more OpenMP virtual streams
than actually created by runtime

• OpenMP runtimes still have runtime issues
• We generally recommend the latest releases,

as they are the most stable

2024/05/28 Slide 41

- For best support, it is advised to use the latest compiler versions
 to ensure best support of the device tracing interface. In our testing,
 ROCm 6.1.0 and AOMP 19.0-0 offer the best support, with the following
 limitations:
 - AOMP 19.0-0 will report incorrect times for data transfers
 between devices.
 - AOMP 18.0-1 may dead lock for short programs when multiple
 accelerators are initialized.
 - ROCm 6.1.0 and earlier and AOMP 18.0-0 and earlier do not support
 multiple devices per rank. If kernels are executed on more than one
 device per process, execution may abort. Otherwise events may
 be associated with the wrong accelerator.
 - AOMP 18.0-0 incorrectly maps identifiers between callbacks and the
 device tracing interface. This leads to data transfers being shown
 incorrectly between the host threads and devices.
 - ROCm 5.7.1 and earlier and AOMP 17.0-3 and earlier do not support
 accessing a device from multiple threads. This may lead to issues
 where events are associated with the incorrect host thread.
 - ROCm 5.6 to 5.7.1 do not dispatch all callbacks for `#pragma omp
 target enter/exit data`. Score-P will abort due to timestamp issues.
 - When utilizing multiple accelerators with ROCm 5.5, execution will
 dead lock at the end of the program execution when Score-P calls
 `stop_trace` for the device tracing interface.
 - ROCm 5.4 and earlier are not supported due to not having a way to
 translate the device time to host time.

Snippet from our OPEN_ISSUES for AMD (others to follow)

Compiler and runtime limitations

WHAT ABOUT OTHER RUNTIMES?

Solution: Use native GPU adapters, if possible!

2024/05/28 Slide 42

Not all runtimes do support device tracing

$ scorep --thread=omp:ompt –cuda nvc -mp=gpu \

 my-code.c -o my-code.out

$ SCOREP_ENABLE_TRACING=true ./my-code.out

● Score-P will output a warning, reminding that no
accelerator data will be collected by OMPT

● However, host callbacks are still recorded!

COMBINING OMPT AND CUPTI

2024/05/28 Slide 43

Showing off results on JUWELS Booster with NVHPC 23.7 on one node with 4x A100

● OMPT adapter is still able
to record host events

● Some host events might
show longer times than
expected

○ Synchronization
points of low-level
runtime

● Native accelerator
adapter records kernels
and data transfers

Transfer waiting for kernel to finish

FINAL WORDS

• With Score-P v9.0, we will expand our OpenMP support in several ways
• Most important: Users will be able to record OpenMP target events

• AMD compilers sufficiently support the OpenMP Tools Interface
• For other compilers: Native accelerator adapters required to get events

• Some compromises had to be made, partially because of the 5.2 specification
• Available implementation already works on several different systems and on small and

large scale

2024/05/28 Slide 44

A short overview of what was shown in this talk

OBTAIN SCORE-P AND GET IN CONTACT

• Visit our web page:
https://score-p.org

• Check out our public GitLab mirror:
https://gitlab.com/score-p/scorep

• Available on several different platforms:

2024/05/28 Slide 45

ppa:score-p/releases

https://go.fzj.de/scorep-ompt-device-tracing

Get the Score-P development version

https://score-p.org
https://gitlab.com/score-p/scorep
https://go.fzj.de/scorep-ompt-device-tracing
https://go.fzj.de/scorep-ompt-device-tracing

THANKS FOR YOUR ATTENTION!
QUESTIONS?

