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C$OMP TASKGROUP
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I am best known for my work on OpenMP
I am one of the last members of the original OpenMP team (1996) still active with the language.

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL  REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok) 

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP  SINGLE PRIVATE(X)

C$OMP SECTIONS 

C$OMP TASKWAIT

C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP  BARRIER

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

#pragma omp target teams distribute parallel for simd

#pragma omp atomic capture

#pragma omp single

OpenMP:  An API for Writing Parallel Applications

§A set of compiler directives and library routines  for parallel application programmers

§Originally … Greatly simplifies writing multithreaded programs in Fortran, C and C++

§Later versions …  supports non-uniform memories, vectorization and GPU programming  

#pragma omp atomic seq_cst



The Growth of Complexity in OpenMP
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The OpenMP specification is so long and complex that few (if any) humans understand the full document

Our goal in 1997 … A simple interface for application programmers 
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How much are different parallel programming models used?
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Repos Size(GB) Files (#) Functions (#)

C 144,522 46.23 4,552,736 87,817,591

C++ 150,481 26.16 4,735,196 68,233,984

Fortran 3,683 0.68 138,552 359,272

● HPCorpus data set for training LLM models for 
parallel programming

● Scan all C, C++ and Fortran codes from github with 
“last updated” dates between 2012 and mid 2023

Note: since we did not collect files with .cu or .cuf suffixes, we may 
have undercounted CUDA usage in HPCorpus.

Aggregate numbers over all repositories from 2013 to 2023

HPCorpus Let us assess usage of HPC programming 
models … OpenMP is number 1!!!

Quantifying OpenMP: Statistical insights into usage and adoption, 
Tal Kadosh, et al., HPEC’2023, https://arxiv.org/abs/2308.08002



Top 50 OpenMP Directives/clauses for C

Indicates items from Common Core

Number of occurrences in HPCorpus (C)

OpenMP Common Core ver. 2.0?

What are people 
actually using from 

OpenMP
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With the HPCorpus* dataset, we 
finally have hard-data to analyze 
what “should” be in the common 
core.

This data was constructed by 
summing up counts for different 
directives and clauses across time 
from 2013 to the middle of 2023.

HPCorpus … a data set created by scraping ”all” HPC 
codes from github written in C, C++ and Fortran.

Quantifying OpenMP: Statistical Insights into Usage and Adoption, 
Tal Kadosh, Niranjan Hasabnis, Tim Mattson, Yuval Pinter, and 
Gal Oren, IEEE HPEC 2023

OpenMP components for GPUs

OpenMP SIMD  components

26/50

13/50
8/50

Traditional multithreading dominates
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OpenMP CPU Patterns: Map work onto a team of threads

Threads run the same code

Thread ID and count to mange work.

Serial code
Parallel code

Data Decomposed Data
int ID = omp_get_thread_num();
Int count  = omp_get num_threads();

Fork-Join execution: Initial Thread (in red) 
forks a team of threads to execute “in 
parallel”.   They join together when done and 
the initial thread continues execution.

#pragma omp parallel

Put tasks into a queue
Execute in parallel

#pragma omp single
#pragma omp task
#pragma omp taskwait

Serial Parallel

for(i=0;i<N;i++)
     A[i] = work();

for(i=0;i<N;i++)
     A[i] = work();

#pragma omp for
Map Loop iterations to threads

Serial code Parallel code

reduction(op:var_list)
private(var_list)

Common clauses on the for construct

Parallel Loops

Task Parallelism
Single Program Multiple Data (SPMD)
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OpenMP GPU Patterns: Offload work from the CPU to the GPU

Parallel loops define an index-space. 
Individual loop iterations define 

units of work (work-items)

work-items and 
data mapped onto 

index space

Work-items 
organized into  
work-groups

Work-groups 
enqueued for 

scheduling. Work-items from a work-
group execute toether .

#pragma omp target teams loop collapse(2)
for (i=0; i<N; i++)
    for(j=0; j<N; j++)
         for(k=0; k<N; k++)
              C[i][j] += A[B[i][k] * B[k][j];
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Offload work to GPU

Manage Memory 
Movement between the 

CPU and the GPU

A four core CPU 
and a SIMD 

width of 8/core

A GPU with 4 
compute units and a 

warp size of 16.

A compute unit is analogous to a 
CPU core (not the SIMD Lanes 
… as Nvidia Marketing claims).

Host Device



I’ve been active in HPC since 1980.  
That makes me an official HPC old-timer

9The cosmic cube, Charles Seitz, Comms of the ACM, Vol 28, number 1 January 1985, p. 22 

The Caltech Cosmic Cube developed by 
Charles Seitz and Geoffrey Fox in1981

• 64 Intel 8086/8087 processors

• 128kB of memory per processor

• 6-dimensional hypercube network

This is my first parallel computer which I used as a Post Doc at Caltech in 1985.
We wrote our code using Fortran’77 and a message passing library.



What HPC old-timers think of Python?
(from the paper, There’s plenty of room at the top.  Leiserson et. al.  Science vol. 368, June 2020).

for I in range(4096):
   for j in range(4096):
       for k in range (4096):
             C[i][j] += A[i][k]*B[k][j]

Amazon AWS c4.8xlarge spot instance, Intel®    Xeon® E5-2666 v3 CPU, 2.9 Ghz, 18 core, 60 GB RAM

They used matrix multiplication to 
explore the connection between 

software and performance 



What HPC old-timers think of Python
(from the paper, There’s plenty of room at the top.  Leiserson et. al.  Science vol. 368, June 2020).

for I in range(4096):
   for j in range(4096):
       for k in range (4096):
             C[i][j] += A[i][k]*B[k][j]

Amazon AWS c4.8xlarge spot instance, Intel®    Xeon® E5-2666 v3 CPU, 2.9 Ghz, 18 core, 60 GB RAM

They used matrix multiplication to 
explore the connection between 

software and performance 

Python performance is a joke.  
No serious HPC programmer 

would EVER use Python



Why is Python so slow?
• Python is interpreted … dynamically compiled

12

Source Code
.py file

Compiler
Checks 
syntax. 

generates 
byte code

Python Virtual 
Machine (PVM):

Translate to 
machine code, 

submits for 
execute line by line

Byte Code
.pyc fle

Program Execution

Python Interpreter
CPU core

L1 Instruction Cache L1 Data Cache

L2 Unified Cache L2 Unified Cache

Shared L3

Memory Controller

Random Access Memory

CPU core
L1 Instruction Cache L1 Data Cache

Core 0 Core 1

Translation Lookaside 
Buffer (TLB)*

Dual core CPU

• What if I want my Python program to run in parallel.  Does that work?
• Not really.  Python has a Global Interpreter lock (GIL).  This is a mutex (mutual 

exclusion lock) to allow only one thread at a time can make forward progress.



Primary Language used in first year, Computer Science Courses
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The Reid List tracks a large sample of North American Universities and the languages they use in teaching.

The Reid List was started by Richard Reid in the 1990s.   He has retired but others are carrying on the tradition.  The above data comes from Trends Of Commonly 
Used Programming Languages in CS1 And CS2 Learning, Robert M. Siegfried, Katherine G. Herbert-Berger,  Kees Leune, Jason P. Siegfried, The 16th International 
Conference on Computer Science & Education (ICCSE 2021) August 18-20, 2021. 

Most programmers are NOT learning 
languages that expose features of the 

hardware.

As hardware complexity increases, 
the population of people who can 
deal with that complexity is going 

down!

Survey of 409 universities in North America
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Python is number One!
Popularity of Programming Languages (PyPl)

https://pypl.github.io/PYPL.html.                            Vertical axis is log(PyPl score)

31.47 %

15.22%

7.65 %

7.05%

5.81%

ShareLanguage

Top 5 Languages

Programmers have spoken … Python rules.  Old-timers (like me) need to stop being such arrogant 
snobs and help make Python a first class HPC language

https://pypl.github.io/PYPL.html


… So perhaps best way to bring parallel computing 
to the masses would be to combine OpenMP and 

Python?

PyOMP: Programming GPUs with OpenMP and Python
Giorgis Georgakouis, Todd A. Anderson, Stuart Archibald, Bronis de Supinski, and Timothy G. Mattson. High Performance Python for Science at Scale workshop at SC24, 2024

PyOMP: Multithreaded Parallel Programming in Python
Timothy G. Mattson, Todd A. Anderson, Giorgis Georgakoudis,  Computing in Science and Engineering, IEEE, November/December 2021

Multithreaded parallel Python through OpenMP support in Numba 
Todd Anderson, Timothy G. Mattson, SciPy 2021. http://conference.scipy.org/proceedings/scipy2021/tim_mattson.html



Design Requirements

To be an effective parallel computing solution for the Python community, PyOMP must satisfy 
three requirements

1. It must be Pythonic.   
– It must match the way Python programmers working on scientific computing problems use Python.   
– It cannot change Python syntax

2. It must deliver performance that is on par with what you’d get from C and OpenMP

3. It must be ubiquitous … available and easy to install on any commonly used platform



Pythonic OpenMP in three-part harmony

• Incorporated into the numba JIT compiler.  The code is JIT’ed into 
LLVM and therefore avoids the Global Interpreter Lock (GIL) and 
supports parallel computing with multiple threads.

• Numpy is the standard module used in scientific computing with 
Python.  Hence, PyOMP is optimized to with numpy arrays.

• OpenMP managed through a context manager (that is, a with 
statement).

JIT: Just In Time Compilation

*

*Opening chord progression from the opera Einstein on the Beach (Knee Play 1) by Philip Glass 



The information on this page is subject to the use and disclosure restrictions provided on the second page to this document.

PyOMP by example …

18

We will understand PyOMP by considering the three fundamental design patterns of OpenMP (Loop 
parallelism, SPMD, and divide and conquer) applied to the following problem

def piFunc(NumSteps):
    step=1.0/NumSteps
    sum = 0.0
    x = 0.5
    for i in range(NumSteps):
        x+=step
        sum += 4.0/(1.0+x*x)
    pi=step*sum
    return pi



Loop Parallelism code

19

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def piFunc(NumSteps):
    step = 1.0/NumSteps
    sum = 0.0
    
    with openmp ("parallel for private(x) reduction(+:sum)"):
        for i in range(NumSteps):
            x = (i+0.5)*step
            sum += 4.0/(1.0 + x*x)

    pi = step*sum
    return pi

pi = piFunc(100000000)

OpenMP constructs managed through an 
openmp context manager.

Pass the OpenMP directive into the 
OpenMP context manager as a string

Python’s implicit data management mapped onto OpenMP.   Default rules:
• Variables referenced outside the OpenMP construct are shared

• Variables that only appear inside a construct are private

• Python for technical applications typically based on Numpy arrays, so PyOMP 
focusses on numpy arrays as well.

OpenMP data environment clauses are supported in PyOMP



Single Program Multiple Data (SPMD)

20

from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_thread_num, omp_get_num_threads
MaxTHREADS = 32
@njit
def piFunc(NumSteps):
    step = 1.0/NumSteps
    partialSums = np.zeros(MaxTHREADS)
    with openmp(“parallel shared(partialSums,numThrds) private(threadID,i,x,localSum)”):
         threadID = omp_get_thread_num()
         with openmp("single"):
            numThrds = omp_get_num_threads()
         localSum = 0.0
         for i in range(threadID, NumSteps, numThrds):
             x = (i+0.5)*step
             localSum = localSum + 4.0/(1.0 + x*x)
         partialSums[threadID] = localSum
    return step*np.sum(partialSums)

pi = piFunc(100000000)

Deal out loop iterations as if a deck of cards (a cyclic distribution) 
… each threads starts with the Iteration = ID, incremented by the 
number of threads, until the whole “deck” is dealt out.    



Divide and Conquer

• Split the problem into smaller sub-problems; continue until the sub-problems can be 
solved directly

n 3 Options for parallelism:
¨ Do work as you split 

into sub-problems
¨ Do work only at the 

leaves
¨ Do work as you 

recombine

subproblem

subsolution

subproblem subproblem

problem

solution

subsolution subsolution

subproblem

subsolution

subproblem subproblem

subsolution subsolution

merge

merge merge

split

splitsplit

solve solvesolvesolve

21



Divide and conquer (with explicit tasks)

22

Solve

Split

Merge

Fork threads 
and launch the 
computation

@njit
def piFunc(NumSteps):
    step = 1.0/NumSteps
    sum = 0.0
    startTime = omp_get_wtime()
    with openmp ("parallel"):
        with openmp ("single"):
             sum = piComp(0,NumSteps,step)

    pi = step*sum
    return step*sum

pi = piFunc(100000000)

from numba import njit
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_num_threads, omp_set_num_threads
MIN_BLK = 1024*256 
@njit
def piComp(Nstart, Nfinish, step):
    iblk = Nfinish-Nstart
    if(iblk<MIN_BLK):
        sum = 0.0
        for i in range(Nstart,Nfinish): 
            x= (i+0.5)*step
            sum += 4.0/(1.0 + x*x)
    else:
        sum1 = 0.0
        sum2 = 0.0
        with openmp ("task shared(sum1)"):
            sum1 = piComp(Nstart, Nfinish-iblk/2,step)
        with openmp ("task shared(sum2)"):
            sum2 = piComp(Nfinish-iblk/2,Nfinish,step)
        with openmp ("taskwait"):
            sum = sum1 + sum2
    return sum



Loop Parallelism code naturally maps onto the GPU

23

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def piFunc(NumSteps):
    step = 1.0/NumSteps
    sum = 0.0
    
    with openmp (”target teams loop private(x) reduction(+:sum)"):
        for i in range(NumSteps):
            x = (i+0.5)*step
            sum += 4.0/(1.0 + x*x)

    pi = step*sum
    return pi

pi = piFunc(100000000)

OpenMP constructs managed through 
the with context manager.

Map the loop onto a 1D index space … the 
loop body defines the kernel function 



Design Requirements

To be an effective parallel computing solution for the Python community, PyOMP must satisfy 
three requirements

1. It must be Pythonic.   
– It must match the way Python programmers working on scientific computing problems use Python.   
– It cannot change Python syntax

2. It must deliver performance that is on par with what you’d get from C and OpenMP

3. It must be ubiquitous … available and easy to install on any commonly used platform

We get a “check minus” on programmability since many Python programmers avoid loops and 
express algorithms solely through  numpy array expressions.   

PyOMP needs to support the OpenMP workshare construct and implement it with fusion and elision 
of temporary arrays (something we know how to do based on work on Parallel Accelerator)



What about performance?  Multiple threads running 
slow, dynamically compiled python code is still slow 

But with statically compiled JIT’ed code ... PyOMP 
programs are fast.  

25JIT: Just In Time compilation



Numerical Integration results in seconds … lower is better

Intel® Xeon® E5-2699 v3 CPU with 18 cores running at 2.30  GHz. 
For the C programs we used Intel® icc compiler version 19.1.3.304 as  icc -qnextgen -O3 –fiopenmp
Ran each case 5 times and kept the minimum time. JIT time is not included for PyOMP (it was about 1.5 seconds)
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Threads
PyOMP C/OpenMP

Loop SPMD Task Loop SPMD Task

1 0.447 0.450 0.453 0.444 0.448 0.445

2 0.252 0.255 0.245 0.245 0.242 0.222

4 0.160 0.164 0.146 0.149 0.149 0.131 

8 0.0890 0.0890 0.0898 0.0827 0.0826 0.0720

16 0.0520 0.0503 0.0517 0.0451 0.0451 0.0431

108 steps



Various Pi programs in Python
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import numba
from numba import njit
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_wtime
import numpy as np

def piArr(Nsteps):
  startTime = omp_get_wtime()
  stepSize   = 1.0/Nsteps
  pts     = np.linspace(0.0,1.0,Nsteps)
  ptsSquPlus1 = np.square(pts)+1.0
  ptsInteg   = 4.0/ptsSquPlus1
  pi      = stepSize*np.sum(ptsInteg)
  runtime = omp_get_wtime()-startTime
  return pi,runtime

def piSeq(NumSteps):
  step = 1.0/NumSteps
  sum  = 0.0
  startTime = omp_get_wtime()
  for i in range(NumSteps):
    x = (i+0.5)*step
    sum += 4.0/(1.0 + x*x)
  pi = step * sum
  runtime = omp_get_wtime()-startTime
  return pi,runtime

@njit
def piNUMBAseq(NumSteps):
  step = 1.0/NumSteps
  sum  = 0.0
  startTime = omp_get_wtime()
  for i in range(NumSteps):
    x = (i+0.5)*step
    sum += 4.0/(1.0 + x*x)
  pi = step * sum
  runtime = omp_get_wtime()-startTime
  return pi,runtime

@njit(parallel=True)
def piNUMBApar(NumSteps):
  step = 1.0/NumSteps
  sum  = 0.0
  startTime = omp_get_wtime()
  for i in numba.prange(NumSteps):
    x = (i+0.5)*step
    sum += 4.0/(1.0 + x*x)
  pi = step * sum
  runtime = omp_get_wtime()-startTime
  return pi,runtime

@njit
def piOMP(NumSteps):
  step = 1.0/NumSteps
  sum  = 0.0
  startTime = omp_get_wtime()
  with openmp("parallel for reduction(+:sum)"):
   for i in range(NumSteps):
     x = (i+0.5)*step
     sum += 4.0/(1.0 + x*x)

  pi = step * sum
  runtime = omp_get_wtime()-startTime
  return pi,runtime

NUMBA_NUM_THREADS=4 python pi.py export OMP_NUM_THREADS=4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Array numpy Numba seq Numba par PyOMP

Runtimes in seconds

4 threads

Ran each case twice, only report second run.  Apple MacBook air, 2023, M2 processor

PiSeq ran in 0.78 seconds
Sequential C code, 0.021 seconds

NSteps = 10000000



PyOMP DGEMM (Mat-Mul with double precision numbers)

28

from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_wtime
 
@njit(fastmath=True)
def dgemm(iterations,order):

    # allocate and initialize arrays
    A = np.zeros((order,order))
    B = np.zeros((order,order))
    C = np.zeros((order,order))

    # Assign values to A and B such that 
    # the product matrix has a known value.
    for i in range(order):
        A[:,i] = float(i)
        B[:,i] = float(i)
 

tInit = omp_get_wtime()    
    with openmp("parallel for private(j,k)"):
          for i in range(order):
              for k in range(order):
                  for j in range(order):
                      C[i][j] += A[i][k] * B[k][j]

    dgemmTime = omp_get_wtime() - tInit
   
    # Check result
    checksum = 0.0;
    for i in range(order):
        for j in range(order):
            checksum += C[i][j];
    ref_checksum = order*order*order
    ref_checksum *= 0.25*(order-1.0)*(order-1.0)
    eps=1.e-8
    if abs((checksum - ref_checksum)/ref_checksum) < eps:
        print('Solution validates')
        nflops = 2.0*order*order*order
        print('Rate (MF/s): ',1.e-6*nflops/dgemmTime)
    



DGEMM PyOMP vs C-OpenMP
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PyOMP

Matrix Multiplication, double precision, order = 1000, with error bars (std dev)

Intel® Xeon® E5-2699 v3 CPU, 18 cores, 2.30 GHz, threads mapped to a single CPU, one thread/per core, first 16 physical cores.  
Intel® icc compiler ver 19.1.3.304 (icc –std=c11 –pthread –O3 xHOST –qopenmp)

250 runs for order 
1000 matrices

PyOMP times 
DO NOT include 
the one-time JIT 

cost of ~2 
seconds.



5-point stencil: Heat diffusion problem

30

# Loop over time steps

 for _ in range(nsteps):

    # solve over spatial domain for step t

    solve(n, alpha, dx, dt, u, u_tmp)

  # Array swap to get ready for next step

    u, u_tmp = u_tmp, u  

𝜕𝑢
𝜕𝑡
− 𝛼∇!𝑢 = 0

𝜕𝑢
𝜕𝑡

≈
𝑢 𝑡 + 1, 𝑥, 𝑦 − 𝑢 𝑡, 𝑥, 𝑦

𝑑𝑡

𝜕!𝑢
𝜕𝑥!

	≈
𝑢 𝑡, 𝑥 + 1, 𝑦 − 2𝑢 𝑡, 𝑥, 𝑦 + 𝑢(𝑡, 𝑥 − 1, 𝑦)

𝑑𝑥!



5-point stencil: solve kernel

@njit
def solve(n, alpha, dx, dt, u, u_tmp):
    # Finite difference constant multiplier
    r = alpha * dt / (dx ** 2)
    r2 = 1 - 4 * r
    # Loop over the nxn grid
        for i in range(n):
            for j in range(n):
                # Update the 5-point stencil.
                # Using boundary conditions on the edges of the domain.
                # Boundaries are zero because the MMS solution is zero there.
                u_tmp[j, i] = (r2 * u[j, i] +
                               (u[j, i+1] if i < n-1 else 0.0) +
                               (u[j, i-1] if i > 0   else 0.0) +
                               (u[j+1, i] if j < n-1 else 0.0) +
                               (u[j-1, i] if j > 0 else 0.0))
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25,000x25,000 grid for 10 time steps
* Xeon Platinum 8480+:       67.6 secs



Solution: parallel stencil (heat)
@njit
def solve(n, alpha, dx, dt, u, u_tmp):
    """Compute the next timestep, given the current timestep"""

    # Finite difference constant multiplier
    r = alpha * dt / (dx ** 2)
    r2 = 1 - 4 * r
    with openmp ("target loop collapse(2) map(tofrom: u, u_tmp)"):
        # Loop over the nxn grid
        for i in range(n):
            for j in range(n):
                u_tmp[j, i] = (r2 * u[j, i] +
                               (u[j, i+1] if i < n-1 else 0.0) +
                               (u[j, i-1] if i > 0   else 0.0) +
                               (u[j+1, i] if j < n-1 else 0.0) +
                               (u[j-1, i] if j > 0 else 0.0))
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25,000x25,00 grid for 10 time steps
• Xeon Platinum 8480+:       67.6 secs
• Nvidia V100:                       22.6 secs



Data Movement dominates…  

33

There can be many time steps … 

For each step, (2*N2)*sizeof(TYPE) 
bytes move between the host and 
the device

• We need to keep data resident on the device between target regions
• We need a way to manage the device data environment across iterations.  



Solution:  Explicitly manage the device data environment

with openmp ("target enter data map(to: u, u_tmp)"):
pass

for _ in range(nsteps):

    solve(n, alpha, dx, dt, u, u_tmp);

  # Array swap to get ready for next step
    u, u_tmp = u_tmp, u

with openmp ("target exit data map(from: u)"):
pass

Copy data to device 
before iteration loop

Change solve() routine to remove map clauses:
with openmp ("target loop collapse(2)”)

Copy data from device 
after iteration loop
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25,000x25,00 grid for 10 time steps
• Xeon Platinum 8480+ default data movement:   67.6 secs
• Nvidia V100 default data movement:                  22.6 secs
• Nvidia V100 target enter/exit:                                1.2 secs



PyOMP HECBench GPU results

35Details in an IWOMP’25 paper submission AMD EPYC 7763 CPU with an NVIDIA A100 GPU with 80 GB or memory. 
Python 3.9.18, Numba 0.57, llvm-lite 0.40, CUDA 12.2 with driver version 525.105.17



Design Requirements

To be an effective parallel computing solution for the Python community, PyOMP must satisfy 
three requirements

1. It must be Pythonic.   
– It must match the way Python programmers working on scientific computing problems use Python.   
– It cannot change Python syntax

2. It must deliver performance that is on par with what you’d get from C and OpenMP

3. It must be ubiquitous … available and easy to install on any commonly used platform



How did we implement PyOMP?

We build on established tools following 
standard practice in the Python Community
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PyOMP implementation: CPU



PyOMP implementation: CPU + GPU



PyOMP: a Numba extension for upgradeability and maintainability

• Depends on Numba as a compiler toolkit
– Similar to numba-cuda, numba-hip

• Uses Numba’s LLVM dependencies
– llvmlite: provides python bindings for the LLVM API (Currently supports LLVM 14.x – We may 

need to patch PyOMP when Numba moves to LLVM 18/19)

• Tested with Numba 0.57.x, 0.58.x
– Architectures: linux-64 (x86_64), osx-arm64 (mac), linux-arm64, linux-ppc64le

40

PyOMP piggybacks on the off-the-shelf Numba ecosystem.  

We don’t need to do any extra work to adapt as new versions of Numba are released



PyOMP is easy to install and use

• Conda one-line installation
           conda install -c python-for-hpc -c conda-forge pyomp

• PyPi package is underway 
      pip install pyomp

• Fast ways to try
– Binder: https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD
– Docker: docker pull ghcr.io/python-for-hpc/pyomp:latest

Open Source code on github:               https://github.com/Python-for-HPC/PyOMP

https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD
https://github.com/Python-for-HPC/PyOMP


Design Requirements

To be an effective parallel computing solution for the Python community, PyOMP must satisfy 
three requirements

1. It must be Pythonic.   
– It must match the way Python programmers working on scientific computing problems use Python.   
– It cannot change Python syntax

2. It must deliver performance that is on par with what you’d get from C and OpenMP

3. It must be ubiquitous … available and easy to install on any commonly used platform

We get a “check minus” on ubiquity since we only work with Nvidia GPUs.    

Nvidia works closely with the Numba community so it was straightforward for us to support their GPUs.  There is no reason 
we can’t support AMD GPUs, but it will take a small bit or work to make it happen.

In anticipation of future work on AMD GPUs we are refactoring the PyOMP software to make adding other GPUs much easier.   
Stay tuned



Related work:   Other OpenMP API bindings

• Pythran
– Transpiles python to C++
– OpenMP using # comments

• PyKokkos
– Transpiles python to C++
– OpenMP through Kokkos abstractions
– Limited support: parallel_for, parallel_reduce, parallel_scan

• OMP4Py
– Pure python implementation (Threads with GIL disabled)
– No GPU support (OpenMP version 3.0)
– Similar interface to PyOMP
– Slow
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Why PyOMP is so important … 
and why all of you should start using it
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In the early days of parallel computing, we were obsessed with finding 
the “right” parallel programming environment

Parallel program environments in the 90’s
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Cid
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CM-Fortran 
Converse
Code
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CORRELATE 
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CRL
CSP
Cthreads 
CUMULVS
DAGGER
DAPPLE 
Data Parallel C 
DC++ 
DCE++ 
DDD
DICE.
DIPC 
DOLIB
DOME 
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel 
Eilean 
Emerald 
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Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE 
Fork
Fortran-M
FX
GA 
GAMMA 
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GUARD
HAsL.
Haskell 
HPC++
JAVAR.
HORUS
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HPF
IMPACT
ISIS.
JAVAR
JADE 
Java RMI
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JavaSpace
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Joyce
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Karma 
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Linda
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Split-C.
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SUIF.
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Threads.h++.
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Language obsessions: More isn’t always better

• The Draeger Grocery Store experiment and consumer choice:
– Two Jam-displays with coupons for a discount on purchase.
– 24 different Jam’s
– 6 different Jam’s

– How many stopped by to try samples at the display?
– Of those who “tried”, how many bought jam?

The findings from this study show that an extensive array of options can at first seem highly 
appealing to consumers, yet can reduce their subsequent motivation to purchase the product.
Iyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality and Social Psychology, 76, 995-1006. 
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With Choice overload in mind … what did we accomplish 
with all these different options for parallel programming?



In the early days of parallel computing, we were obsessed with finding 
the “right” parallel programming environment
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Furthermore, engineering is a zero-sum game … time spent 
chasing the next great programming model is time NOT 

spent making the models we have actually work



The end of the crisis
• In the early 90’s, the HPC community was fed up with message 

passing chaos.  Driven largely by application developers, we created 
MPI (version 1.0 released in 1994).

• In the late 90’s, the HPC community working in the Accelerated 
Strategic Computing Initiative (ASCI) used their influence over which 
HPC systems were purchased to “force” vendor’s hands to support a 
standard for programming shared memory systems.  The result was 
OpenMP (version 1.0 released in 1997).

Portable parallel programming is important for the people who create HPC 
applications.  It took their direct involvement and dedication to create open 

standards and end parallel programming chaos.



The major parallel Programming systems in 2024 … 
well at least we have our act together in two cases. L

• In HPC, 3 programming environments dominate … covering the major classes of hardware.
– MPI:  distributed memory systems … though it works nicely on shared memory 

computers.

– OpenMP:  Shared memory systems … more recently, GPGPU too.

– CUDA, OpenCL, Sycl, OpenACC, OpenMP … :  GPU programming (use CUDA if you don’t 
mind locking yourself to a single vendor … it is a really nice programming model)
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Parallel programming with Python is terribly fragmented
dispy
Delegate 
forkmap 
forkfun 
Jobibppmap
POSH
 pp 
pprocess 
processing 
PyCSP 
PyMP 
Ray 
remoteD 
torcp 
VecPy 
batchlib 
Celery 
Charm4py 
PyCUDA 
Ramba

Dask 
Deap 
disco 
dispy 
DistributedPYthon 
exec_proxy 
execnet 
iPython 
job_stream jug 
mpi4py 
NetWorkSpaces 
PaPy 
papyrus 
PyCOMPSs 
PyLinda 
pyMPI 
pypar 
multiprocessing 
PyOpenCL

pyPastSet 
pypvm 
pynpvm 
Pyro 
Ray 
Rthread
 ScientificPython.BSP 
Scientific.DistrubedComputing.MasterSlave 
Scientific.MPI 
SCOOP 
seppo 
PySpark 
Star-P 
superrpy 
torcpy 
StarCluster 
dpctl 
arkouda
PyOMP
dpnp

Building on the list at https://wiki.python.org/moin/ParallelProcessing

Python programmers are locked 
into the same dystopic world of 

HPC in the 90’s.

History suggests that this won’t 
get better until the python 
applications community 

demands (and dedicates 
themselves) to a minimal set of 

open, standard solutions



Conclusion
• Python is the language of choice for 

most programmers … so let’s stop telling 
them to learn C/C++ or Fortran to do 
HPC

• PyOMP lets you write OpenMP code in 
Python.  Try it, you’ll like it.

• But we need your help …
– We need a user base.  Please use it and tell us 

about your successes and failures.

– Help drive convergence around a minimal 
number of open, portable parallel programming 
environments in Python.   We all win if this 
happens.

– We need more people to join the PyOMP team 
and help us grow the technology.  For 
example, I want the OpenMP workshare 
construct with fusion and array elision. I need 
someone to work with us to make that happen.

52My Greenlandic skin-on-frame kayak in the middle of Budd Inlet during a negative tide



The OpenMP Common Core

#pragma omp parallel

void omp_set_thread_num()
int omp_get_thread_num()
int omp_get_num_threads()

double omp_get_wtime()

setenv OMP_NUM_THREADS  N

#pragma omp barrier
#pragma omp critical

#pragma omp for
#pragma omp parallel for

reduction(op:list)

schedule (static [,chunk])
schedule(dynamic [,chunk])

shared(list), private(list), firstprivate(list) 

default(none)

nowait

#pragma omp single

#pragma omp task
#pragma omp taskwait

The OpenMP Common Core

53

For many years now, we’ve 
been teaching the subset of 
OpenMP that is most commonly 
used.    We call this the  
     OpenMP Common Core

We even wrote a book about it.

The list of items in the common 
core were determined by 
experience/anecdote … we 
didn’t have hard data to drive 
the analysis.



To learn more about 
GPU programming with 

OpenMP 
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The latest book on OpenMP … 

A book about how to use OpenMP to 
program a GPU (focusses on C and 

C++ … not Python)



Extra content …

A tutorial introduction to PyOMP (for programmers new to OpenMP)
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OpenMP* Overview

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL  REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok) 

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP  SINGLE PRIVATE(X)

C$OMP SECTIONS 

C$OMP MASTERC$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP  BARRIER

OpenMP:  An API for Writing Multithreaded 
Applications

• A set of compiler directives and library routines  for parallel 
application programmers

• Greatly simplifies writing multi-threaded (MT) programs in Fortran, 
C and C++

• Standardizes established SMP practice + vectorization and 
heterogeneous device programming

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.



from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def hello():
  with openmp("parallel"):
    print("hello")
    print("world")

hello()
print("DONE")

PyOMP: OpenMP projected into Python
• A parallel multithreaded “hello world” program with PyOMP
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PyOMP: OpenMP projected into Python
• A parallel multithreaded “hello world” program with PyOMP
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from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def hello():
  with openmp("parallel"):
    print("hello")
    print("world")

hello()
print("DONE")

OpenMP managed 
through the with 

context manager.

• Numba Just In Time (JIT) compiler compiles the Python code into LLVM thereby bypassing the 
GIL.   Hence, the threads execute in parallel. 

• The string in the with openmp context manager is identical to the constructs in OpenMP.  If you 
know OpenMP for C/C++/Fortran, then you know it for Python

Numba Just In Time 
(JIT) compiler 

compiles the Python 
code into LLVM.   

Compiled code 
cached for later use.

The code inside the with 
context manager is 

packaged into a function and 
executed by each thread

“parallel” creates a team of threads



from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def hello():
  with openmp("parallel"):
    print("hello")
    print("world")

hello()
print("DONE")

PyOMP: OpenMP projected into Python
• A parallel multithreaded “hello world” program with PyOMP
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hello
world
hello
hello
hello
world
hello
world
hello
world
hello
world
world
world
hello
world
DONE

When I run this program, 
here is the output.

The interleaved print 
output is different each 
time I run the program



Why is the output from our hello world 
program so weird?

To answer that question, we must  
digress briefly and settle on a few key 

definitions
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Concurrency vs. Parallelism
• Two important definitions:

– Concurrency: A condition of a system in which multiple tasks are active and unordered.  If scheduled fairly, 
they can be described as logically making forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the 
same time.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

Concurrent, parallel Execution

Concurrent, non-parallel Execution
PE0

PE0

PE1

PE1

PE2

PE3

Time
PE = Processing Element



from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def hello():
  with openmp("parallel"):
    print("hello")
    print("world")

hello()
print("DONE")

PyOMP: OpenMP projected into Python
• A parallel multithreaded “hello world” program with PyOMP
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hello
world
hello
hello
hello
world
hello
world
hello
world
hello
world
world
world
hello
world
DONE

When I run this program, 
here is the output.

The challenge for programmers writing multithreaded code is to make sure every 
semantically allowed way statements can interleave results in correct code.



Lets dive into the details of 
multithreading and how they are most 

commonly used in an application
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OpenMP Execution Model
Fork-Join Parallelism: 

• Initial thread forks a team of threads as needed.
• They execute in a shared address space … All reads read/write a common set of the variables.
• When the team is finished, the threads join together and the initial thread continues
• Parallelism added incrementally until performance goals are met, i.e., the sequential program 

evolves into a parallel program.
Parallel Regions

Initial 
Thread 
in red

A Nested 
Parallel 
region

Sequential Parts



The information on this page is subject to the use and disclosure restrictions provided on the second page to this document.

Understanding OpenMP
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We will explain the key elements of OpenMP as we explore the three fundamental design patterns of 
OpenMP (Loop parallelism, SPMD, and divide and conquer) applied to the following problem

def piFunc(NumSteps):
    step=1.0/NumSteps
    pisum = 0.0
    x = 0.5
    for i in range(NumSteps):
        x+=step
        pisum += 4.0/(1.0+x*x)
    pi=step*pisum
    return pi
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The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can 

safely execute when divided between a collection of threads.  
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.
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The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can 

safely execute when divided between a collection of threads.  
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
    step=1.0/NumSteps
    pisum = 0.0
    x = 0.5
    for i in range(NumSteps):
        x+=step
        pisum += 4.0/(1.0+x*x)
    pi=step*pisum
    return pi
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The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can 

safely execute when divided between a collection of threads.  
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
    step=1.0/NumSteps
    pisum = 0.0
    x = 0.5
    for i in range(NumSteps):
        x+=step
        pisum += 4.0/(1.0+x*x)
    pi=step*pisum
    return pi

A loop carried 
dependency
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The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can 

safely execute when divided between a collection of threads.  
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
    step=1.0/NumSteps
    pisum = 0.0
    x = 0.5
    for i in range(NumSteps):
        x+=step
        pisum += 4.0/(1.0+x*x)
    pi=step*pisum
    return pi

def piFunc(NumSteps):
    step=1.0/NumSteps
    pisum = 0.0
 
    for i in range(NumSteps):
        x=(i+0.5)*step
        pisum += 4.0/(1.0+x*x)
    pi=step*pisum
    return pi

A loop carried 
dependency

Recast to 
compute from i



This 
dependency is 

more 
complicated.  It’s 

called a 
reduction 70

The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can 

safely execute when divided between a collection of threads.  
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
    step=1.0/NumSteps
    pisum = 0.0
    x = 0.5
    for i in range(NumSteps):
        x+=step
        pisum += 4.0/(1.0+x*x)
    pi=step*pisum
    return pi

def piFunc(NumSteps):
    step=1.0/NumSteps
    pisum = 0.0
 
    for i in range(NumSteps):
        x=(i+0.5)*step
        pisum += 4.0/(1.0+x*x)
    pi=step*pisum
    return pi

A loop carried 
dependency

Recast to 
compute from i



Loop Parallelism code
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from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def piFunc(NumSteps):
    step = 1.0/NumSteps
    pisum = 0.0
    
    with openmp ("parallel for private(x) reduction(+:pisum)"):
        for i in range(NumSteps):
            x = (i+0.5)*step
            pisum += 4.0/(1.0 + x*x)

    pi = step*pisum
    return pi

pi = piFunc(100000000)

OpenMP managed through the with context manager.

Pass the OpenMP directive into the OpenMP context 
manager as a string

• parallel: creates a team of threads
• for: maps loop iterations onto threads.   
• private(x): each threads gets its own x
• Loop control index of a parallel for (i) is private to each thread.
• reduction(+:sum): combine sum from each thread using +

Numba Just In Time (JIT) compiler compiles the Python code into 
LLVM thereby bypassing the GIL.   Compiled code cached for 
later use.

GIL: Global Interpreter Lock
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Reduction
• OpenMP reduction clause added to a parallel for:   

reduction (op : list)

• Inside the parallel for:
– Each thread gets a private copy of each 

variable in list … initialized depending on the 
“op” 
(e.g., 0 for “+”).

– Updates to the reduction variable from each 
thread happens to its private copy. 

– The private copies from each thread are 
combined into a single value … and then 
combined with the original global value … all 
using the op from the reduction clause.

• The variables in the “list” must be shared in the 
enclosing parallel region.  

from numba import njit
 from numba.openmp import openmp_context as openmp

 @njit
 def piFunc(NumSteps):
     step = 1.0/NumSteps
     pisum = 0.0
    
     with openmp ("parallel for private(x) reduction(+:pisum)"):
         for i in range(NumSteps):
             x = (i+0.5)*step
             pisum += 4.0/(1.0 + x*x)

     pi = step*pisum
     return pi

 pi = piFunc(100000000)

We don’t discuss the details here, but you can also add a reduction clause to a parallel or a for construct.



Numerical Integration results in seconds … lower is better

Intel® Xeon® E5-2699 v3 CPU with 18 cores running at 2.30  GHz. 
For the C programs we used Intel® icc compiler version 19.1.3.304 as  icc -qnextgen -O3 –fopenmp
Ran each case 5 times and kept the minimum time. JIT time is not included for PyOMP (it was about 1.5 seconds)
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Threads
PyOMP C

Loop SPMD Task Loop SPMD Task

1 0.447 0.450 0.453 0.444 0.448 0.445

2 0.252 0.255 0.245 0.245 0.242 0.222

4 0.160 0.164 0.146 0.149 0.149 0.131 

8 0.0890 0.0890 0.0898 0.0827 0.0826 0.0720

16 0.0520 0.0503 0.0517 0.0451 0.0451 0.0431

108 steps



Parallel Loop are great … but sometimes 
you want more control over individual 

threads
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Understanding OpenMP

75

We will explain the key elements of OpenMP as we explore the three fundamental design patterns of 
OpenMP (Loop parallelism, SPMD, and divide and conquer) applied to the following problem

def piFunc(NumSteps):
    step=1.0/NumSteps
    pisum = 0.0
    x = 0.5
    for i in range(NumSteps):
        x+=step
        pisum += 4.0/(1.0+x*x)
    pi=step*pisum
    return pi
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SPMD (Single Program Multiple Data) design pattern

• Run the same program on P processing elements where P can be arbitrarily large. 
• Use the rank … an ID ranging from 0 to (P-1) … to select between a set of tasks and to manage any shared 

data structures. 

This pattern is very general and has been used to support most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is probably the most commonly used pattern in the history of parallel programming.

Replicate the program.

Add glue code

Break up the data

Third party names are the property of their owners



Single Program Multiple Data (SPMD)
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from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_thread_num, omp_get_num_threads
MaxTHREADS = 32
@njit
def piFunc(NumSteps):
    step = 1.0/NumSteps
    partialSums = np.zeros(MaxTHREADS)
    with openmp(“parallel shared(partialSums,numThrds) private(threadID,i,x,localSum)”):
        threadID = omp_get_thread_num()
        with openmp("single"):
            numThrds = omp_get_num_threads()
        localSum = 0.0
        for i in range(threadID, NumSteps, numThrds):
            x = (i+0.5)*step
            localSum = localSum + 4.0/(1.0 + x*x)
        partialSums[threadID] = localSum
    return step*np.sum(partialSums)

pi = piFunc(100000000)

• omp_get_num_threads(): get N=number of threads
• omp_get_thread_num(): thread rank = 0…(N-1)
• single: One thread does the work, others wait 
• private(x): each threads gets its own x
• shared(x): all threads see the same x

Deal out loop iterations as if a deck of cards (a cyclic distribution) 
… each threads starts with the Iteration = ID, incremented by the 
number of threads, until the whole “deck” is dealt out.    



The data environment seen by OpenMP threads

• Variables can be shared or private.
– Shared variable: A variable that is visible (i.e. can be 

read or written) to all threads in a team.
– Private variable: A  variable that is only visible to an 

individual thread.   

• All the code associated with an OpenMP directive 
(such as parallel or for), including the code in 
functions called inside that code, is called a region.  A 
directive plus code in the immediate block associated 
with it, is called a construct

• Rules for defining a variable as shared or private:
– A variable is shared if it is used before or after an 

OpenMP construct, otherwise it is private.
– Variables can be made shared or private through clauses 

included with a directive.
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• The data environment is the collection of variables visible to the threads in a team.

from numba import njit
 from numba.openmp import openmp_context as openmp

 @njit
 def piFunc(NumSteps):
     step = 1.0/NumSteps
     pisum = 0.0
     with openmp ("parallel for reduction(+:pisum)"):
         for i in range(NumSteps):
             x = (i+0.5)*step
             pisum += 4.0/(1.0 + x*x)

     pi = step*pisum
     return pi

 pi = piFunc(100000000)

x first used inside the 
OpenMP construct  … it 

is private.



Numerical Integration results in seconds … lower is better

Intel® Xeon® E5-2699 v3 CPU with 18 cores running at 2.30  GHz. 
For the C programs we used Intel® icc compiler version 19.1.3.304 as  icc -qnextgen -O3 –fiopenmp
Ran each case 5 times and kept the minimum time. JIT time is not included for PyOMP (it was about 1.5 seconds)
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Threads
PyOMP C

Loop SPMD Task Loop SPMD Task

1 0.447 0.450 0.453 0.444 0.448 0.445

2 0.252 0.255 0.245 0.245 0.242 0.222

4 0.160 0.164 0.146 0.149 0.149 0.131 

8 0.0890 0.0890 0.0898 0.0827 0.0826 0.0720

16 0.0520 0.0503 0.0517 0.0451 0.0451 0.0431

108 steps



How do we handle problems without such 
regular structure or with complex load 

balancing problems?

We do this in OpenMP with explicit tasks
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Explicit tasks in PyOMP
• A task is a sequence of statements and an associated data environment.  Lots of flexibility in how those 

tasks are created, so handles irregular parallelism, recursive parallelism, and many other control structures.

• A common pattern … one thread creates explicit tasks and puts them in a queue.  All the threads work 
together to execute them. The single construct causes one thread to execute statements while the other 
threads wait at a barrier at the end of the single.   It’s perfect for task level parallelism.

from numba import njit
from numba.openmp import openmp_context as openmp
   
@njit
def irregularPar():
  with openmp("parallel"):
   with openmp("single"):
        StateVal = 1
      while (StateVal > 0):
        with openmp("task firstprivate(StateVal)"):
          BigComp(StateVal)
        StateVal = ExitYet()
  return
   
irregularPar()

An explicit task … 
captures value of 

the variable 
StateVal and 
calls BigComp.

Single: one thread does the work while the 
other threads wait (and execute tasks) at the 

barrier implied at the end of single

Returns a negative value at 
some point (function not shown)



Divide and conquer design pattern
• Split the problem into smaller sub-problems; continue until the sub-problems can be 

solved directly

3 Options for parallelism:
¨ Do work as you split 

into sub-problems
¨ Do work at the 

leaves
¨ Do work as you 

recombine



Divide and conquer (with explicit tasks)
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Solve

Split

Merge

Fork threads 
and launch the 
computation

• single: One thread does the work, others wait 
• task: code block enqueued for execution
• taskwait: wait until task in the code block finish

@njit
def piFunc(NumSteps):
    step = 1.0/NumSteps
    sum = 0.0
    startTime = omp_get_wtime()
    with openmp ("parallel"):
        with openmp ("single"):
             pisum = piComp(0,NumSteps,step)

    pi = step*pisum
    return pi

pi = piFunc(100000000)

from numba import njit
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_num_threads, omp_set_num_threads
MIN_BLK = 1024*256 
@njit
def piComp(Nstart, Nfinish, step):
    iblk = Nfinish-Nstart
    if(iblk<MIN_BLK):
        pisum = 0.0
        for i in range(Nstart,Nfinish): 
            x= (i+0.5)*step
            pisum += 4.0/(1.0 + x*x)
    else:
        sum1 = 0.0
        sum2 = 0.0
        with openmp ("task shared(sum1)"):
            sum1 = piComp(Nstart, Nfinish-iblk/2,step)
        with openmp ("task shared(sum2)"):
            sum2 = piComp(Nfinish-iblk/2,Nfinish,step)
        with openmp ("taskwait"):
            pisum = sum1 + sum2
    return pisum



Numerical Integration results in seconds … lower is better

Intel® Xeon® E5-2699 v3 CPU with 18 cores running at 2.30  GHz. 
For the C programs we used Intel® icc compiler version 19.1.3.304 as  icc -qnextgen -O3 –fiopenmp
Ran each case 5 times and kept the minimum time. JIT time is not included for PyOMP (it was about 1.5 seconds)
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Threads
PyOMP C

Loop SPMD Task Loop SPMD Task

1 0.447 0.450 0.453 0.444 0.448 0.445

2 0.252 0.255 0.245 0.245 0.242 0.222

4 0.160 0.164 0.146 0.149 0.149 0.131 

8 0.0890 0.0890 0.0898 0.0827 0.0826 0.0720

16 0.0520 0.0503 0.0517 0.0451 0.0451 0.0431

108 steps



There is more …. But this is enough 
to get you started with CPU 

programming in PyOMP

So let’s wrap up our discussion of 
CPU programming
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with openmp("parallel"): Create a team of threads.   Execute a parallel region  
with openmp("for"): Use inside a parallel region.  Split up a loop across the team. 
with openmp("parallel for"): A combined construct. Same a parallel followed by a for. 
with openmp ("single"): One thread does the work.  Others wait for it to finish 
with openmp("task"): Create an explicit task for work within the construct.
with openmp("taskwait"): Wait for all tasks in the current task to complete.  
with openmp("barrier"): All threads arrive at a barrier before any proceed.   
with openmp("critical"): Mutual exclusion.   One thread at a time executes code 
schedule(static [,chunk]) Map blocks of loop iterations across the team.  Use with for.
reduction(op:list) Combine values with op across the team. Used with for

private(list)                        Make a local copy of variables for each thread. Use with parallel, for or task.
firstprivate(list) private, but initialize with original value. Use with parallel, for or task

shared(list) Variables shared between threads. Use with parallel, for or task. 

default(none) Force definition of variables as private or shared. 
omp_get_num_threads() Return the number of threads in a team  
omp_get_thread_num() Return an ID from 0 to the number of threads minus one  
omp_set_num_threads(int) Set the number of threads to request for parallel regions
omp_get_wtime() Return a snapshot of the wall clock time. 
OMP_NUM_THREADS=N Environment variable to set the default number of threads 

PyOMP subset of OpenMP for CPU programming



PyOMP subset of OpenMP for CPU programming
with openmp("parallel"): Create a team of threads.   Execute a parallel region  
with openmp("for"): Use inside a parallel region.  Split up a loop across the team. 
with openmp("parallel for"): A combined construct. Same a parallel followed by a for. 
with openmp ("single"): One thread does the work.  Others wait for it to finish 
with openmp("task"): Create an explicit task for work within the construct.
with openmp("taskwait"): Wait for all tasks in the current task to complete.  
with openmp("barrier"): All threads arrive at a barrier before any proceed.   
with openmp("critical"): Mutual exclusion.   One thread at a time executes code 
schedule(static [,chunk]) Map blocks of loop iterations across the team.  Use with for.
reduction(op:list) Combine values with op across the team. Used with for

private(list)                        Make a local copy of variables for each thread. Use with parallel, for or task.
firstprivate(list) private, but initialize with original value. Use with parallel, for or task

shared(list) Variables shared between threads. Use with parallel, for or task. 

default(none) Force definition of variables as private or shared. 
omp_get_num_threads() Return the number of threads in a team  
omp_get_thread_num() Return an ID from 0 to the number of threads minus one  
omp_set_num_threads(int) Set the number of threads to request for parallel regions
omp_get_wtime() Return a snapshot of the wall clock time. 
OMP_NUM_THREADS=N Environment variable to set the default number of threads 

Work sharing

Synchronization

Data
Environment

runtime 
libraries

Par. Loop support

Fork threads

Environment



The view of Python from an HPC perspective 

for I in range(4096):
   for j in range(4096):
       for k in range (4096):
             C[i][j] += A[i][k]*B[k][j]

Amazon AWS c4.8xlarge spot instance, Intel®    Xeon® E5-2666 v3 CPU, 2.9 Ghz, 18 core, 60 GB RAM

We know better … 
the IKJ order is more 

cache friendly 
for I in range(1000):
   for k in range(1000):
       for j in range (1000):
             C[i][j] += A[i][k]*B[k][j]And we picked a 

smaller problem



PyOMP DGEMM (Mat-Mul with double precision numbers)
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from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_wtime
 
@njit(fastmath=True)
def dgemm(iterations,order):

    # allocate and initialize arrays
    A = np.zeros((order,order))
    B = np.zeros((order,order))
    C = np.zeros((order,order))

    # Assign values to A and B such that 
    # the product matrix has a known value.
    for i in range(order):
        A[:,i] = float(i)
        B[:,i] = float(i)
 

tInit = omp_get_wtime()    
    with openmp("parallel for private(j,k)"):
          for i in range(order):
              for k in range(order):
                  for j in range(order):
                      C[i][j] += A[i][k] * B[k][j]

    dgemmTime = omp_get_wtime() - tInit
   
    # Check result
    checksum = 0.0;
    for i in range(order):
        for j in range(order):
            checksum += C[i][j]
    ref_checksum = order*order*order
    ref_checksum *= 0.25*(order-1.0)*(order-1.0)
    eps=1.e-8
    if abs((checksum - ref_checksum)/ref_checksum) < eps:
        print('Solution validates')
        nflops = 2.0*order*order*order
        print('Rate (MF/s): ',1.e-6*nflops/dgemmTime)
    



DGEMM PyOMP vs C-OpenMP

40

30

20

10

1 2 4 8 16
Number of threads

Ave. G
FLO

PS (B
illions of floating point ops per sec)

C with OpenMP

PyOMP

Matrix Multiplication, double precision, order = 1000, with error bars (std dev)

Intel® Xeon® E5-2699 v3 CPU, 18 cores, 2.30 GHz, threads mapped to a single CPU, one thread/per core, first 16 physical cores.  
Intel® icc compiler ver 19.1.3.304 (icc –std=c11 –pthread –O3 xHOST –qopenmp)

250 runs for order 
1000 matrices

PyOMP times 
DO NOT include 
the one-time JIT 

cost of ~2 
seconds.

… but remember, 
the JIT’ed code  

can be cached for 
future use.  It’s 

straightforward to 
hide the JIT cost.



And we can use PyOMP for GPU programming

91



The “BIG idea” Behind GPU programming

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if (i < N) c[i] = a[i] + b[i];
}

int main () {
    int N = ... ;
    float *a, *b, *c;
    cudaMalloc (&a,  sizeof(float) * N);
  // ... allocate other arrays (b and c)
  // and fill with data

  // Use thread blocks with 256 threads each
    vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}
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Assume a GPU with 
unified shared memory 

… allocate on host, 
visible on device too

int main() {
   int N = . . . ;
   float *a, *b, *c;
   
   a* =(float *) malloc(N * sizeof(float));

   // ... allocate other arrays (b and c)
   // and fill with data

   for (int i=0;i<N; i++)
      c[i] = a[i] + b[i]; 

}

Traditional Loop based vector addition (vadd)

Data Parallel vadd with CUDA



How do we execute code on a GPU:
The SIMT model (Single Instruction Multiple Thread)
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// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if (i < N) c[i] = a[i] + b[i];
}

int main () {
    int N = ... ;
    float *a, *b, *c;
    cudaMalloc (&a,  sizeof(float) * N);
  // ... allocate other arrays (b and c)
  // and fill with data

  // Use thread blocks with 256 threads each
    vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}

1. Turn source code into a 
scalar work-item

2. Map work-items onto an 
N dim index space. 

4. Run on hardware 
designed around the 

same SIMT 
execution model

3. Map data structures 
onto the same index 

space
This is CUDA code … the sort of code the 

OpenMP compiler generates on your behalf

Note: The CUDA code defines a 1D grid. I show a 2D grid on this slide to make kernel execution and its relation to data more clear.



SIMT: One instruction stream maps onto many SIMD lanes

• SIMT model: Individual scalar instruction streams are grouped together for SIMD 
execution on hardware

SL0 SL1 SL2 SL3 SL4 SL5 SL6 SL7

ld x
mul a
ld y
add
st y

A stream of 
Scalar 
instructions

NVIDIA calls this set of 
work-items a warp

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

SIMD execution scheduled 
across a fixed number of 

SIMD Lanes (SL)
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A Generic GPU (following Hennessey and Patterson)

Private Memory (work-item)
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Global  Memory (kernel)

Logical Memory Hierarchy



A Generic Host/Device Platform Model

• One Host and one or more Devices
– Each Device is composed of one or more Compute Units
– Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing 
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

97PE: processing element. The finest-grained processing element inside a GPU.  Also known as a SiMD-lane or CUDA-core.
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Executing a program on CPUs and GPUs
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CPU/GPU execution models

For a CPU, the 
threads are all 
active and able 

to make forward 
progress.

For a GPU, any 
given work-group 

might be in the 
queue waiting to 

execute.



How do we map a loop onto the 
GPU execution model in PyOMP?

101



Step 1: move code and data onto the GPU:  
The target construct and default data movement

Host thread
Generating Task

Initial task

Target task

with openmp ("target"):
{
      target region, 
can use A, B and N
    

}

Device Initial 
thread

Host thread
waits for the 

task region to 
complete

A = numpy.ones(N)
B = numpy.ones(N) A, B and N 

mapped to the 
device

the arrays 
A and B 

mapped back to 
the host

Based on figure 6.4 in Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017

Scalars and numpy arrays are moved onto the 
device by default before execution.

Only the arrays are moved back to the 
host after the target region completes
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Step 2: Map loop iterations onto the GPU’s SIMD lanes  
@njit
def main():
    N = 1024
    A = numpy.ones(N)
    B = numpy.ones(N)

    with openmp ("target "):
        with openmp ("loop"):
            for i in range(N):
                A[i] += B[i]

The loop construct tells the compiler: 
“this loop will execute correctly if 

the loop iterations run in any order.  
You can safely run them 

concurrently.  And the loop-body 
doesn’t contain any OpenMP 

constructs.  So do whatever you 
can to make the code run fast”

103

The loop construct is a declarative construct.   You 
tell the compiler what you want done but you DO 
NOT tell it how to “do it”.     This is new for OpenMP



Step 2: Map loop iterations onto the GPU’s SIMD lanes  
@njit
def main():
    N = 1024
    A = numpy.ones(N)
    B = numpy.ones(N)

    with openmp ("target "):
        with openmp ("loop"):
            for i in range(N):
                A[i] += B[i]

104

1. Variables created in host memory.

2. Scalar N and arrays A and B are copied 
to device memory. Execution transferred to 

device.

3. For-loop index variables (such as i) are 
private in openmp regions

4. Loop iterations define the index space, 
work-items, and work-groups.

5. After the OpenMP construct, arrays A 
and B are copied from device memory 

back to the host. Host resumes execution.

Difference from OpenMP/C: PyOMP only has NumPy arrays, which carry size 
information.   So, PyOMP arrays sent in full by default ... as it is with C static-arrays.



Loop Parallelism code naturally maps onto the CPU
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from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
 
@njit(fastmath=True)
def dgemm(iterations,N):

    # allocate and initialize numpy arrays
    # A, B and C of size N by N.   <<< code not shown>>>
     
    with openmp("parallel for private(j,k)"):
          for i in range(N):
              for k in range(N):
                  for j in range(N):
                      C[i][j] += A[i][k] * B[k][j]

OpenMP constructs managed through 
the with context manager.

Create a team of threads.  Map loop iterations onto them

• parallel: creates a team of threads
• for: maps loop iterations onto threads.   
• private(j,k): each threads gets its own j and k variables
• Loop control index of a parallel for (i) is private to each thread.



Loop Parallelism code naturally maps onto the CPU
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from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
 
@njit(fastmath=True)
def dgemm(iterations,N):

    # allocate and initialize numpy arrays
    # A, B and C of size N by N.   <<< code not shown>>>
     
    with openmp(”target teams loop collapse(2) private(j)"):
          for i in range(N):
              for k in range(N):
                  for j in range(N):
                      C[i][j] += A[i][k] * B[k][j]

OpenMP constructs managed through 
the with context manager.

Map the loop onto a 2D index space … the 
loop body defines the kernel function 

• target: map execution from the host onto the device
• teams loop: Map kernel instances onto PEs inside the compute units
• collapse(2): combine following two loops into a single iteration space. 
• private(j): each threads gets its own j variable
• Indices of parallelized loops (i,k) are private to each thread.

PE: processing element. The finest-grained processing element inside a GPU.  Also known as a SiMD lane or CUDA-core.



Implicit data movement covers a small subset of 
the cases you need in a real program.

To be more general … we need to manage data 
movement explicitly
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Implicit data movement

• Previously, we described the rules for implicit data movement … N, A and B moved to the GPU on 
entry to the target construct.   A and B moved to the CPU on exit from the target construct.

• Notice that in this case, B is not changed on the GPU … moving it is a waste of resources

@njit
def main():
    N = 1024
    A = numpy.ones(N)
    B = numpy.ones(N)

    with openmp ("target"):
        for i in range(N):
            A[i] += B[i]
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Controlling data movement with the map clause

@njit
def main():
    N = 1024
    A = numpy.ones(N)
    B = numpy.ones(N)

    with openmp ("target map(tofrom: A) map(to: B)"):
        for i in range(N):
            A[i] += B[i]

map(tofrom: A) Map data at the 
start and end of target region.

map(to: B) map data at the start 
of target region but NOT at the 
end.
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We use the term “map” since depending on the detailed memory architecture of the CPU 
and the GPU, data may be in a shared address space so copying may not be needed.



PyOMP array notation

• When mapping data arrays, if you only give the array name then PyOMP 
transfers the entire array (using the NumPy array metadata to determine the size)

• To transfer less than the full array, the array section syntax can be used
– array_name[begin:end]
– This follows Python/NumPy slicing syntax where begin is inclusive but end is exclusive.

A[N:M]. In set notation implies elements [N:M)
– Multi-dimensional arrays work as expected when transferred in full.  Currently PyOmp doesn’t 

support array-section syntax for multi-dimensional arrays.
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C Difference: In C, arrays are usually dynamically allocated and referenced through a pointer.  You 
must use array-section syntax to move data.  In C, array-syntax is “(initial-offset: number-of-items)”. 
Fortran uses “begin:end” syntax (as Python does), but the ending index is inclusive (i.e., [begin:end]).



Controlling data movement: the map clause
– map(to:list): On entering the region, variables in the list are initialized on the device 

using the original values from the host (host to device copy).
– map(from:list):  At the end of the target region, the values from variables in the list are 

copied into the original variables on the host (device to host copy). On entering the 
region, the initial value of the variables on the device is not initialized.
– map(tofrom:list): the effect of both a map-to and a map-from (host to device copy at 

start of region, device to host copy at end).
– map(alloc:list): On entering the region, data is allocated and uninitialized on the device.
– map(list): equivalent to map(tofrom:list).
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When applied to an array, the mapping mode applies only to the array’s data.  Array metadata is always 
transferred as to and no operations which would change the metadata (e.g., resize) are permitted.

Note: Data 
movement is 
defined from 

the 
perspective of 

the host.

@njit
def main():
    a = numpy.ones(N)
    b = numpy.ones(N)
    c = numpy.empty(N)
    with openmp ("target teams loop map(to: a,b) map(tofrom: c)"):
        for i in range(N):
                c[i] = a[i] + b[i]



Going beyond simple vector addition … 

Using OpenMP for GPU application 
programming … the heat diffusion problem



5-point stencil: the heat program

• The heat equation models changes in temperature over time.

• We’ll solve this numerically on a computer using an explicit finite difference discretisation.
• 𝑢 = 𝑢 𝑡, 𝑥, 𝑦  is a function of space and time.
• Partial differentials are approximated using diamond difference formulae:

𝜕𝑢
𝜕𝑡 ≈

𝑢 𝑡 + 1, 𝑥, 𝑦 − 𝑢 𝑡, 𝑥, 𝑦
𝑑𝑡

𝜕!𝑢
𝜕𝑥! 	≈

𝑢 𝑡, 𝑥 + 1, 𝑦 − 2𝑢 𝑡, 𝑥, 𝑦 + 𝑢(𝑡, 𝑥 − 1, 𝑦)
𝑑𝑥!

– Forward finite difference in time, central finite difference in space.

𝜕𝑢
𝜕𝑡 − 𝛼∇

!𝑢 = 0
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5-point stencil: the heat program

• Given an initial value of 𝑢, and any boundary conditions, we can calculate the value of 𝑢	at time 
t+1 given the value at time t.

• Each update requires values from the north, south, east and west neighbours only:

• Computation is essentially a weighted average of each cell and its neighbouring cells.
• If on a boundary, look up a boundary condition instead.
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Heat diffusion problem  …  

# Loop over time steps

 for _ in range(nsteps):

    # solve over spatial domain for step t

    solve(n, alpha, dx, dt, u, u_tmp)

  # Array swap to get ready for next step

    u, u_tmp = u_tmp, u  
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Array-swap on the host works.  Why?

u and u_tmp are references to structs that 
hold NumPy metadata and a data pointer.

 The OpenMP runtime creates a device 
struct at the target enter data construct 

and maintains a fixed association between 
host and device struct references. 

 Hence, as you swap the array variables, 
the references to the struct addresses in 

device memory are swapped.



5-point stencil: solve kernel

@njit
def solve(n, alpha, dx, dt, u, u_tmp):
    # Finite difference constant multiplier
    r = alpha * dt / (dx ** 2)
    r2 = 1 - 4 * r
    # Loop over the nxn grid
        for i in range(n):
            for j in range(n):
                # Update the 5-point stencil.
                # Using boundary conditions on the edges of the domain.
                # Boundaries are zero because the MMS solution is zero there.
                u_tmp[j, i] = (r2 * u[j, i] +
                               (u[j, i+1] if i < n-1 else 0.0) +
                               (u[j, i-1] if i > 0   else 0.0) +
                               (u[j+1, i] if j < n-1 else 0.0) +
                               (u[j-1, i] if j > 0 else 0.0))
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25,000x25,000 grid for 10 time steps
* Xeon Platinum 8480+:       67.6 secs



Solution: parallel stencil (heat)
@njit
def solve(n, alpha, dx, dt, u, u_tmp):
    """Compute the next timestep, given the current timestep"""

    # Finite difference constant multiplier
    r = alpha * dt / (dx ** 2)
    r2 = 1 - 4 * r
    with openmp ("target loop collapse(2) map(tofrom: u, u_tmp)"):
        # Loop over the nxn grid
        for i in range(n):
            for j in range(n):
                u_tmp[j, i] = (r2 * u[j, i] +
                               (u[j, i+1] if i < n-1 else 0.0) +
                               (u[j, i-1] if i > 0   else 0.0) +
                               (u[j+1, i] if j < n-1 else 0.0) +
                               (u[j-1, i] if j > 0 else 0.0))
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25,000x25,00 grid for 10 time steps
• Xeon Platinum 8480+:       67.6 secs
• Nvidia V100:                       22.6 secs



Data Movement dominates…  

# Loop over time steps

 for _ in range(nsteps):

    # solve over spatial domain for step t

    solve(n, alpha, dx, dt, u, u_tmp)

  # Array swap to get ready for next step

    u, u_tmp = u_tmp, u  
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Typically, many time steps!

solve() function uses this context:
with openmp ("target loop collapse(2) map(tofrom: u, u_tmp)"):

For each iteration, copy from device
(2*N2)*sizeof(TYPE) bytes

25,000x25,00 grid for 10 time steps
• Xeon Platinum 8480+:       67.6 secs
• Nvidia V100:                       22.6 secs

• We need to keep data resident on the device between target regions
• We need a way to manage the device data environment across iterations.  



Target enter/exit data constructs

• The target data construct requires a structured block of code.
– Often inconvenient in real codes.

• Can achieve similar behavior with two standalone directives:
with openmp ("target enter data map(…"):
with openmp ("target exit data map(…"):

• The target enter data maps variables to the device data environment.
• The target exit data unmaps variables from the device data environment.
• Future target regions inherit the existing data environment.
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Solution:  Reference swapping in action
with openmp ("target enter data map(to: u, u_tmp)"):

pass

for _ in range(nsteps):

    solve(n, alpha, dx, dt, u, u_tmp);

  # Array swap to get ready for next step
    u, u_tmp = u_tmp, u

with openmp ("target exit data map(from: u)"):
pass

Copy data to device 
before iteration loop

Change solve() routine to remove map clauses:
with openmp ("target loop collapse(2)”)

Copy data from device 
after iteration loop
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25,000x25,00 grid for 10 time steps
• Xeon Platinum 8480+ default data movement:   67.6 secs
• Nvidia V100 default data movement:                  22.6 secs
• Nvidia V100 target enter/exit:                                1.2 secs



Target update directive
• You can update data between target regions with 

the target update directive.

with openmp ("target data map(to: A, B) map(from: C)"):

with openmp ("target"):
 {do lots of stuff with A, B and C}

with openmp ("target update from(A)"):
    {do something on the host}

with openmp ("target update to(A)"):
    pass

with openmp ("target"):
 {do lots of stuff with A, B and C}

map A on the 
device to A on the 
host.  

map A on the host to A on the 
device.  Note: openmp 
context body cannot be 
empty so use “pass”

Set up the data 
region ahead of 
time.

Note: update directive has the transfer direction as the clause: e.g. update to(…)
 Compare to map clause with direction inside: map(to: …) 121



Data movement summary

• Data transfers between host/device occur at:
– Beginning and end of target region
– Beginning and end of target data region
– At the target enter data construct
– At the target exit data construct
– At the target update construct

• Can use target data and target enter/exit data to reduce redundant transfers.

• Use the target update construct to transfer data on the fly within a target data 
region or between target enter/exit data directives.
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