
PyOMP: Writing HPC Code with Python

Tim Mattson (University of Bristol and Merly.ai … but mostly retired)
tim@timmattson.com

Acknowledgement: The rest of the PyOMP team ….
Giorgis Georgakoudis (LLNL), Todd Anderson (bodo.ai), and Stuart Archibald (anaconda)

PyOMP: Writing HPC Code with Python

Tim Mattson (University of Bristol and Merly.ai … but mostly retired)
tim@timmattson.com

Acknowledgement: The rest of the PyOMP team ….
Giorgis Georgakoudis (LLNL), Todd Anderson (bodo.ai), and Stuart Archibald (anaconda)

C$OMP TASKGROUP

3

I am best known for my work on OpenMP
I am one of the last members of the original OpenMP team (1996) still active with the language.

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP TASKWAIT

C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

#pragma omp target teams distribute parallel for simd

#pragma omp atomic capture

#pragma omp single

OpenMP: An API for Writing Parallel Applications

§A set of compiler directives and library routines for parallel application programmers

§Originally … Greatly simplifies writing multithreaded programs in Fortran, C and C++

§Later versions … supports non-uniform memories, vectorization and GPU programming

#pragma omp atomic seq_cst

The Growth of Complexity in OpenMP

4
The OpenMP specification is so long and complex that few (if any) humans understand the full document

Our goal in 1997 … A simple interface for application programmers

0

100

200

300

400

500

600

1995 2000 2005 2010 2015 2020 2025

Chart Title

1.0

1.0 1.1 2.0

2.5
3.0 3.1

4.0

4.5

5.0*

5.1*

5.2*tr10

2.0

Fortran spec
C/C++ spec
Merged C/C++ and Fortran spec

1995 2000 2005 2010 2015 2020 2025
0

500

600

400

300

200

100

Page Counts … not including front matter, tools-interface, appendices or the index.

Page C
ounts

How much are different parallel programming models used?

5

Repos Size(GB) Files (#) Functions (#)

C 144,522 46.23 4,552,736 87,817,591

C++ 150,481 26.16 4,735,196 68,233,984

Fortran 3,683 0.68 138,552 359,272

● HPCorpus data set for training LLM models for
parallel programming

● Scan all C, C++ and Fortran codes from github with
“last updated” dates between 2012 and mid 2023

Note: since we did not collect files with .cu or .cuf suffixes, we may
have undercounted CUDA usage in HPCorpus.

Aggregate numbers over all repositories from 2013 to 2023

HPCorpus Let us assess usage of HPC programming
models … OpenMP is number 1!!!

Quantifying OpenMP: Statistical insights into usage and adoption,
Tal Kadosh, et al., HPEC’2023, https://arxiv.org/abs/2308.08002

Top 50 OpenMP Directives/clauses for C

Indicates items from Common Core

Number of occurrences in HPCorpus (C)

OpenMP Common Core ver. 2.0?

What are people
actually using from

OpenMP

6

With the HPCorpus* dataset, we
finally have hard-data to analyze
what “should” be in the common
core.

This data was constructed by
summing up counts for different
directives and clauses across time
from 2013 to the middle of 2023.

HPCorpus … a data set created by scraping ”all” HPC
codes from github written in C, C++ and Fortran.

Quantifying OpenMP: Statistical Insights into Usage and Adoption,
Tal Kadosh, Niranjan Hasabnis, Tim Mattson, Yuval Pinter, and
Gal Oren, IEEE HPEC 2023

OpenMP components for GPUs

OpenMP SIMD components

26/50

13/50
8/50

Traditional multithreading dominates

7

OpenMP CPU Patterns: Map work onto a team of threads

Threads run the same code

Thread ID and count to mange work.

Serial code
Parallel code

Data Decomposed Data
int ID = omp_get_thread_num();
Int count = omp_get num_threads();

Fork-Join execution: Initial Thread (in red)
forks a team of threads to execute “in
parallel”. They join together when done and
the initial thread continues execution.

#pragma omp parallel

Put tasks into a queue
Execute in parallel

#pragma omp single
#pragma omp task
#pragma omp taskwait

Serial Parallel

for(i=0;i<N;i++)
 A[i] = work();

for(i=0;i<N;i++)
 A[i] = work();

#pragma omp for
Map Loop iterations to threads

Serial code Parallel code

reduction(op:var_list)
private(var_list)

Common clauses on the for construct

Parallel Loops

Task Parallelism
Single Program Multiple Data (SPMD)

8

OpenMP GPU Patterns: Offload work from the CPU to the GPU

Parallel loops define an index-space.
Individual loop iterations define

units of work (work-items)

work-items and
data mapped onto

index space

Work-items
organized into
work-groups

Work-groups
enqueued for

scheduling. Work-items from a work-
group execute toether .

#pragma omp target teams loop collapse(2)
for (i=0; i<N; i++)
 for(j=0; j<N; j++)
 for(k=0; k<N; k++)
 C[i][j] += A[B[i][k] * B[k][j];

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

cache

G
PU

 M
em

ory

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

cache

G
PU

 M
em

ory

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

C
PU

 M
em

ory

Offload work to GPU

Manage Memory
Movement between the

CPU and the GPU

A four core CPU
and a SIMD

width of 8/core

A GPU with 4
compute units and a

warp size of 16.

A compute unit is analogous to a
CPU core (not the SIMD Lanes
… as Nvidia Marketing claims).

Host Device

I’ve been active in HPC since 1980.
That makes me an official HPC old-timer

9The cosmic cube, Charles Seitz, Comms of the ACM, Vol 28, number 1 January 1985, p. 22

The Caltech Cosmic Cube developed by
Charles Seitz and Geoffrey Fox in1981

• 64 Intel 8086/8087 processors

• 128kB of memory per processor

• 6-dimensional hypercube network

This is my first parallel computer which I used as a Post Doc at Caltech in 1985.
We wrote our code using Fortran’77 and a message passing library.

What HPC old-timers think of Python?
(from the paper, There’s plenty of room at the top. Leiserson et. al. Science vol. 368, June 2020).

for I in range(4096):
 for j in range(4096):
 for k in range (4096):
 C[i][j] += A[i][k]*B[k][j]

Amazon AWS c4.8xlarge spot instance, Intel® Xeon® E5-2666 v3 CPU, 2.9 Ghz, 18 core, 60 GB RAM

They used matrix multiplication to
explore the connection between

software and performance

What HPC old-timers think of Python
(from the paper, There’s plenty of room at the top. Leiserson et. al. Science vol. 368, June 2020).

for I in range(4096):
 for j in range(4096):
 for k in range (4096):
 C[i][j] += A[i][k]*B[k][j]

Amazon AWS c4.8xlarge spot instance, Intel® Xeon® E5-2666 v3 CPU, 2.9 Ghz, 18 core, 60 GB RAM

They used matrix multiplication to
explore the connection between

software and performance

Python performance is a joke.
No serious HPC programmer

would EVER use Python

Why is Python so slow?
• Python is interpreted … dynamically compiled

12

Source Code
.py file

Compiler
Checks
syntax.

generates
byte code

Python Virtual
Machine (PVM):

Translate to
machine code,

submits for
execute line by line

Byte Code
.pyc fle

Program Execution

Python Interpreter
CPU core

L1 Instruction Cache L1 Data Cache

L2 Unified Cache L2 Unified Cache

Shared L3

Memory Controller

Random Access Memory

CPU core
L1 Instruction Cache L1 Data Cache

Core 0 Core 1

Translation Lookaside
Buffer (TLB)*

Dual core CPU

• What if I want my Python program to run in parallel. Does that work?
• Not really. Python has a Global Interpreter lock (GIL). This is a mutex (mutual

exclusion lock) to allow only one thread at a time can make forward progress.

Primary Language used in first year, Computer Science Courses

0

50

100

150

200

250

C C++ java Python

Comp Sci 1 languages. ... Reid List

2011 2015 2019
The Reid List tracks a large sample of North American Universities and the languages they use in teaching.

The Reid List was started by Richard Reid in the 1990s. He has retired but others are carrying on the tradition. The above data comes from Trends Of Commonly
Used Programming Languages in CS1 And CS2 Learning, Robert M. Siegfried, Katherine G. Herbert-Berger, Kees Leune, Jason P. Siegfried, The 16th International
Conference on Computer Science & Education (ICCSE 2021) August 18-20, 2021.

Most programmers are NOT learning
languages that expose features of the

hardware.

As hardware complexity increases,
the population of people who can
deal with that complexity is going

down!

Survey of 409 universities in North America

N
um

be
r o

f U
ni

ve
rs

iti
es

 e
ac

h
ye

ar

Python is number One!
Popularity of Programming Languages (PyPl)

https://pypl.github.io/PYPL.html. Vertical axis is log(PyPl score)

31.47 %

15.22%

7.65 %

7.05%

5.81%

ShareLanguage

Top 5 Languages

Programmers have spoken … Python rules. Old-timers (like me) need to stop being such arrogant
snobs and help make Python a first class HPC language

https://pypl.github.io/PYPL.html

… So perhaps best way to bring parallel computing
to the masses would be to combine OpenMP and

Python?

PyOMP: Programming GPUs with OpenMP and Python
Giorgis Georgakouis, Todd A. Anderson, Stuart Archibald, Bronis de Supinski, and Timothy G. Mattson. High Performance Python for Science at Scale workshop at SC24, 2024

PyOMP: Multithreaded Parallel Programming in Python
Timothy G. Mattson, Todd A. Anderson, Giorgis Georgakoudis, Computing in Science and Engineering, IEEE, November/December 2021

Multithreaded parallel Python through OpenMP support in Numba
Todd Anderson, Timothy G. Mattson, SciPy 2021. http://conference.scipy.org/proceedings/scipy2021/tim_mattson.html

Design Requirements

To be an effective parallel computing solution for the Python community, PyOMP must satisfy
three requirements

1. It must be Pythonic.
– It must match the way Python programmers working on scientific computing problems use Python.
– It cannot change Python syntax

2. It must deliver performance that is on par with what you’d get from C and OpenMP

3. It must be ubiquitous … available and easy to install on any commonly used platform

Pythonic OpenMP in three-part harmony

• Incorporated into the numba JIT compiler. The code is JIT’ed into
LLVM and therefore avoids the Global Interpreter Lock (GIL) and
supports parallel computing with multiple threads.

• Numpy is the standard module used in scientific computing with
Python. Hence, PyOMP is optimized to with numpy arrays.

• OpenMP managed through a context manager (that is, a with
statement).

JIT: Just In Time Compilation

*

*Opening chord progression from the opera Einstein on the Beach (Knee Play 1) by Philip Glass

The information on this page is subject to the use and disclosure restrictions provided on the second page to this document.

PyOMP by example …

18

We will understand PyOMP by considering the three fundamental design patterns of OpenMP (Loop
parallelism, SPMD, and divide and conquer) applied to the following problem

def piFunc(NumSteps):
 step=1.0/NumSteps
 sum = 0.0
 x = 0.5
 for i in range(NumSteps):
 x+=step
 sum += 4.0/(1.0+x*x)
 pi=step*sum
 return pi

Loop Parallelism code

19

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def piFunc(NumSteps):
 step = 1.0/NumSteps
 sum = 0.0

 with openmp ("parallel for private(x) reduction(+:sum)"):
 for i in range(NumSteps):
 x = (i+0.5)*step
 sum += 4.0/(1.0 + x*x)

 pi = step*sum
 return pi

pi = piFunc(100000000)

OpenMP constructs managed through an
openmp context manager.

Pass the OpenMP directive into the
OpenMP context manager as a string

Python’s implicit data management mapped onto OpenMP. Default rules:
• Variables referenced outside the OpenMP construct are shared

• Variables that only appear inside a construct are private

• Python for technical applications typically based on Numpy arrays, so PyOMP
focusses on numpy arrays as well.

OpenMP data environment clauses are supported in PyOMP

Single Program Multiple Data (SPMD)

20

from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_thread_num, omp_get_num_threads
MaxTHREADS = 32
@njit
def piFunc(NumSteps):
 step = 1.0/NumSteps
 partialSums = np.zeros(MaxTHREADS)
 with openmp(“parallel shared(partialSums,numThrds) private(threadID,i,x,localSum)”):
 threadID = omp_get_thread_num()
 with openmp("single"):
 numThrds = omp_get_num_threads()
 localSum = 0.0
 for i in range(threadID, NumSteps, numThrds):
 x = (i+0.5)*step
 localSum = localSum + 4.0/(1.0 + x*x)
 partialSums[threadID] = localSum
 return step*np.sum(partialSums)

pi = piFunc(100000000)

Deal out loop iterations as if a deck of cards (a cyclic distribution)
… each threads starts with the Iteration = ID, incremented by the
number of threads, until the whole “deck” is dealt out.

Divide and Conquer

• Split the problem into smaller sub-problems; continue until the sub-problems can be
solved directly

n 3 Options for parallelism:
¨ Do work as you split

into sub-problems
¨ Do work only at the

leaves
¨ Do work as you

recombine

subproblem

subsolution

subproblem subproblem

problem

solution

subsolution subsolution

subproblem

subsolution

subproblem subproblem

subsolution subsolution

merge

merge merge

split

splitsplit

solve solvesolvesolve

21

Divide and conquer (with explicit tasks)

22

Solve

Split

Merge

Fork threads
and launch the
computation

@njit
def piFunc(NumSteps):
 step = 1.0/NumSteps
 sum = 0.0
 startTime = omp_get_wtime()
 with openmp ("parallel"):
 with openmp ("single"):
 sum = piComp(0,NumSteps,step)

 pi = step*sum
 return step*sum

pi = piFunc(100000000)

from numba import njit
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_num_threads, omp_set_num_threads
MIN_BLK = 1024*256
@njit
def piComp(Nstart, Nfinish, step):
 iblk = Nfinish-Nstart
 if(iblk<MIN_BLK):
 sum = 0.0
 for i in range(Nstart,Nfinish):
 x= (i+0.5)*step
 sum += 4.0/(1.0 + x*x)
 else:
 sum1 = 0.0
 sum2 = 0.0
 with openmp ("task shared(sum1)"):
 sum1 = piComp(Nstart, Nfinish-iblk/2,step)
 with openmp ("task shared(sum2)"):
 sum2 = piComp(Nfinish-iblk/2,Nfinish,step)
 with openmp ("taskwait"):
 sum = sum1 + sum2
 return sum

Loop Parallelism code naturally maps onto the GPU

23

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def piFunc(NumSteps):
 step = 1.0/NumSteps
 sum = 0.0

 with openmp (”target teams loop private(x) reduction(+:sum)"):
 for i in range(NumSteps):
 x = (i+0.5)*step
 sum += 4.0/(1.0 + x*x)

 pi = step*sum
 return pi

pi = piFunc(100000000)

OpenMP constructs managed through
the with context manager.

Map the loop onto a 1D index space … the
loop body defines the kernel function

Design Requirements

To be an effective parallel computing solution for the Python community, PyOMP must satisfy
three requirements

1. It must be Pythonic.
– It must match the way Python programmers working on scientific computing problems use Python.
– It cannot change Python syntax

2. It must deliver performance that is on par with what you’d get from C and OpenMP

3. It must be ubiquitous … available and easy to install on any commonly used platform

We get a “check minus” on programmability since many Python programmers avoid loops and
express algorithms solely through numpy array expressions.

PyOMP needs to support the OpenMP workshare construct and implement it with fusion and elision
of temporary arrays (something we know how to do based on work on Parallel Accelerator)

What about performance? Multiple threads running
slow, dynamically compiled python code is still slow

But with statically compiled JIT’ed code ... PyOMP
programs are fast.

25JIT: Just In Time compilation

Numerical Integration results in seconds … lower is better

Intel® Xeon® E5-2699 v3 CPU with 18 cores running at 2.30 GHz.
For the C programs we used Intel® icc compiler version 19.1.3.304 as icc -qnextgen -O3 –fiopenmp
Ran each case 5 times and kept the minimum time. JIT time is not included for PyOMP (it was about 1.5 seconds)

26

Threads
PyOMP C/OpenMP

Loop SPMD Task Loop SPMD Task

1 0.447 0.450 0.453 0.444 0.448 0.445

2 0.252 0.255 0.245 0.245 0.242 0.222

4 0.160 0.164 0.146 0.149 0.149 0.131

8 0.0890 0.0890 0.0898 0.0827 0.0826 0.0720

16 0.0520 0.0503 0.0517 0.0451 0.0451 0.0431

108 steps

Various Pi programs in Python

27

import numba
from numba import njit
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_wtime
import numpy as np

def piArr(Nsteps):
 startTime = omp_get_wtime()
 stepSize = 1.0/Nsteps
 pts = np.linspace(0.0,1.0,Nsteps)
 ptsSquPlus1 = np.square(pts)+1.0
 ptsInteg = 4.0/ptsSquPlus1
 pi = stepSize*np.sum(ptsInteg)
 runtime = omp_get_wtime()-startTime
 return pi,runtime

def piSeq(NumSteps):
 step = 1.0/NumSteps
 sum = 0.0
 startTime = omp_get_wtime()
 for i in range(NumSteps):
 x = (i+0.5)*step
 sum += 4.0/(1.0 + x*x)
 pi = step * sum
 runtime = omp_get_wtime()-startTime
 return pi,runtime

@njit
def piNUMBAseq(NumSteps):
 step = 1.0/NumSteps
 sum = 0.0
 startTime = omp_get_wtime()
 for i in range(NumSteps):
 x = (i+0.5)*step
 sum += 4.0/(1.0 + x*x)
 pi = step * sum
 runtime = omp_get_wtime()-startTime
 return pi,runtime

@njit(parallel=True)
def piNUMBApar(NumSteps):
 step = 1.0/NumSteps
 sum = 0.0
 startTime = omp_get_wtime()
 for i in numba.prange(NumSteps):
 x = (i+0.5)*step
 sum += 4.0/(1.0 + x*x)
 pi = step * sum
 runtime = omp_get_wtime()-startTime
 return pi,runtime

@njit
def piOMP(NumSteps):
 step = 1.0/NumSteps
 sum = 0.0
 startTime = omp_get_wtime()
 with openmp("parallel for reduction(+:sum)"):
 for i in range(NumSteps):
 x = (i+0.5)*step
 sum += 4.0/(1.0 + x*x)

 pi = step * sum
 runtime = omp_get_wtime()-startTime
 return pi,runtime

NUMBA_NUM_THREADS=4 python pi.py export OMP_NUM_THREADS=4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Array numpy Numba seq Numba par PyOMP

Runtimes in seconds

4 threads

Ran each case twice, only report second run. Apple MacBook air, 2023, M2 processor

PiSeq ran in 0.78 seconds
Sequential C code, 0.021 seconds

NSteps = 10000000

PyOMP DGEMM (Mat-Mul with double precision numbers)

28

from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_wtime

@njit(fastmath=True)
def dgemm(iterations,order):

 # allocate and initialize arrays
 A = np.zeros((order,order))
 B = np.zeros((order,order))
 C = np.zeros((order,order))

 # Assign values to A and B such that
 # the product matrix has a known value.
 for i in range(order):
 A[:,i] = float(i)
 B[:,i] = float(i)

tInit = omp_get_wtime()
 with openmp("parallel for private(j,k)"):
 for i in range(order):
 for k in range(order):
 for j in range(order):
 C[i][j] += A[i][k] * B[k][j]

 dgemmTime = omp_get_wtime() - tInit

 # Check result
 checksum = 0.0;
 for i in range(order):
 for j in range(order):
 checksum += C[i][j];
 ref_checksum = order*order*order
 ref_checksum *= 0.25*(order-1.0)*(order-1.0)
 eps=1.e-8
 if abs((checksum - ref_checksum)/ref_checksum) < eps:
 print('Solution validates')
 nflops = 2.0*order*order*order
 print('Rate (MF/s): ',1.e-6*nflops/dgemmTime)

DGEMM PyOMP vs C-OpenMP

40

30

20

10

1 2 4 8 16
Number of threads

Ave. G
FLO

PS (B
illions of floating point ops per sec)

C with OpenMP

PyOMP

Matrix Multiplication, double precision, order = 1000, with error bars (std dev)

Intel® Xeon® E5-2699 v3 CPU, 18 cores, 2.30 GHz, threads mapped to a single CPU, one thread/per core, first 16 physical cores.
Intel® icc compiler ver 19.1.3.304 (icc –std=c11 –pthread –O3 xHOST –qopenmp)

250 runs for order
1000 matrices

PyOMP times
DO NOT include
the one-time JIT

cost of ~2
seconds.

5-point stencil: Heat diffusion problem

30

Loop over time steps

 for _ in range(nsteps):

 # solve over spatial domain for step t

 solve(n, alpha, dx, dt, u, u_tmp)

 # Array swap to get ready for next step

 u, u_tmp = u_tmp, u

𝜕𝑢
𝜕𝑡
− 𝛼∇!𝑢 = 0

𝜕𝑢
𝜕𝑡

≈
𝑢 𝑡 + 1, 𝑥, 𝑦 − 𝑢 𝑡, 𝑥, 𝑦

𝑑𝑡

𝜕!𝑢
𝜕𝑥!

	≈
𝑢 𝑡, 𝑥 + 1, 𝑦 − 2𝑢 𝑡, 𝑥, 𝑦 + 𝑢(𝑡, 𝑥 − 1, 𝑦)

𝑑𝑥!

5-point stencil: solve kernel

@njit
def solve(n, alpha, dx, dt, u, u_tmp):
 # Finite difference constant multiplier
 r = alpha * dt / (dx ** 2)
 r2 = 1 - 4 * r
 # Loop over the nxn grid
 for i in range(n):
 for j in range(n):
 # Update the 5-point stencil.
 # Using boundary conditions on the edges of the domain.
 # Boundaries are zero because the MMS solution is zero there.
 u_tmp[j, i] = (r2 * u[j, i] +
 (u[j, i+1] if i < n-1 else 0.0) +
 (u[j, i-1] if i > 0 else 0.0) +
 (u[j+1, i] if j < n-1 else 0.0) +
 (u[j-1, i] if j > 0 else 0.0))

31

25,000x25,000 grid for 10 time steps
* Xeon Platinum 8480+: 67.6 secs

Solution: parallel stencil (heat)
@njit
def solve(n, alpha, dx, dt, u, u_tmp):
 """Compute the next timestep, given the current timestep"""

 # Finite difference constant multiplier
 r = alpha * dt / (dx ** 2)
 r2 = 1 - 4 * r
 with openmp ("target loop collapse(2) map(tofrom: u, u_tmp)"):
 # Loop over the nxn grid
 for i in range(n):
 for j in range(n):
 u_tmp[j, i] = (r2 * u[j, i] +
 (u[j, i+1] if i < n-1 else 0.0) +
 (u[j, i-1] if i > 0 else 0.0) +
 (u[j+1, i] if j < n-1 else 0.0) +
 (u[j-1, i] if j > 0 else 0.0))

32

25,000x25,00 grid for 10 time steps
• Xeon Platinum 8480+: 67.6 secs
• Nvidia V100: 22.6 secs

Data Movement dominates…

33

There can be many time steps …

For each step, (2*N2)*sizeof(TYPE)
bytes move between the host and
the device

• We need to keep data resident on the device between target regions
• We need a way to manage the device data environment across iterations.

Solution: Explicitly manage the device data environment

with openmp ("target enter data map(to: u, u_tmp)"):
pass

for _ in range(nsteps):

 solve(n, alpha, dx, dt, u, u_tmp);

 # Array swap to get ready for next step
 u, u_tmp = u_tmp, u

with openmp ("target exit data map(from: u)"):
pass

Copy data to device
before iteration loop

Change solve() routine to remove map clauses:
with openmp ("target loop collapse(2)”)

Copy data from device
after iteration loop

34

25,000x25,00 grid for 10 time steps
• Xeon Platinum 8480+ default data movement: 67.6 secs
• Nvidia V100 default data movement: 22.6 secs
• Nvidia V100 target enter/exit: 1.2 secs

PyOMP HECBench GPU results

35Details in an IWOMP’25 paper submission AMD EPYC 7763 CPU with an NVIDIA A100 GPU with 80 GB or memory.
Python 3.9.18, Numba 0.57, llvm-lite 0.40, CUDA 12.2 with driver version 525.105.17

Design Requirements

To be an effective parallel computing solution for the Python community, PyOMP must satisfy
three requirements

1. It must be Pythonic.
– It must match the way Python programmers working on scientific computing problems use Python.
– It cannot change Python syntax

2. It must deliver performance that is on par with what you’d get from C and OpenMP

3. It must be ubiquitous … available and easy to install on any commonly used platform

How did we implement PyOMP?

We build on established tools following
standard practice in the Python Community

37

PyOMP implementation: CPU

PyOMP implementation: CPU + GPU

PyOMP: a Numba extension for upgradeability and maintainability

• Depends on Numba as a compiler toolkit
– Similar to numba-cuda, numba-hip

• Uses Numba’s LLVM dependencies
– llvmlite: provides python bindings for the LLVM API (Currently supports LLVM 14.x – We may

need to patch PyOMP when Numba moves to LLVM 18/19)

• Tested with Numba 0.57.x, 0.58.x
– Architectures: linux-64 (x86_64), osx-arm64 (mac), linux-arm64, linux-ppc64le

40

PyOMP piggybacks on the off-the-shelf Numba ecosystem.

We don’t need to do any extra work to adapt as new versions of Numba are released

PyOMP is easy to install and use

• Conda one-line installation
 conda install -c python-for-hpc -c conda-forge pyomp

• PyPi package is underway
 pip install pyomp

• Fast ways to try
– Binder: https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD
– Docker: docker pull ghcr.io/python-for-hpc/pyomp:latest

Open Source code on github: https://github.com/Python-for-HPC/PyOMP

https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD
https://github.com/Python-for-HPC/PyOMP

Design Requirements

To be an effective parallel computing solution for the Python community, PyOMP must satisfy
three requirements

1. It must be Pythonic.
– It must match the way Python programmers working on scientific computing problems use Python.
– It cannot change Python syntax

2. It must deliver performance that is on par with what you’d get from C and OpenMP

3. It must be ubiquitous … available and easy to install on any commonly used platform

We get a “check minus” on ubiquity since we only work with Nvidia GPUs.

Nvidia works closely with the Numba community so it was straightforward for us to support their GPUs. There is no reason
we can’t support AMD GPUs, but it will take a small bit or work to make it happen.

In anticipation of future work on AMD GPUs we are refactoring the PyOMP software to make adding other GPUs much easier.
Stay tuned

Related work: Other OpenMP API bindings

• Pythran
– Transpiles python to C++
– OpenMP using # comments

• PyKokkos
– Transpiles python to C++
– OpenMP through Kokkos abstractions
– Limited support: parallel_for, parallel_reduce, parallel_scan

• OMP4Py
– Pure python implementation (Threads with GIL disabled)
– No GPU support (OpenMP version 3.0)
– Similar interface to PyOMP
– Slow

43

Why PyOMP is so important …
and why all of you should start using it

44

In the early days of parallel computing, we were obsessed with finding
the “right” parallel programming environment

Parallel program environments in the 90’s

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze
BSP
BlockComm
C*.
"C* in C
C**
CarlOS
Cashmere
C4
CC++
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran
Converse
Code
COOL

CORRELATE
CPS
CRL
CSP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC
DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel
Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX
GA
GAMMA
Glenda

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS
HPC
HPF
IMPACT
ISIS.
JAVAR
JADE
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM
Lilac
Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean
P4-Linda
Glenda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
p4-Linda
Pablo
PADE
PADRE
Panda
Papers
AFAPI.
Para++

Paradigm

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti
pC
pC++
PCN
PCP:
PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus
QPC++
PVM
PSI
PSDM
Quake
Quark
Quick Threads
Sage++
SCANDAL
SAM

pC++
SCHEDULE
SciTL
POET
SDDA.
SHMEM
SIMPLE
Sina
SISAL.
distributed smalltalk
SMI.
SONiC
Split-C.
SR
Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY
UC
V
ViC*
Visifold V-NUS
VPE
Win32 threads
WinPar
WWWinda
XENOOPS

XPC
Zounds
ZPL

Pe
rc

en
ta

ge

60

try

40

try

24 6

Language obsessions: More isn’t always better

• The Draeger Grocery Store experiment and consumer choice:
– Two Jam-displays with coupons for a discount on purchase.
– 24 different Jam’s
– 6 different Jam’s

– How many stopped by to try samples at the display?
– Of those who “tried”, how many bought jam?

The findings from this study show that an extensive array of options can at first seem highly
appealing to consumers, yet can reduce their subsequent motivation to purchase the product.
Iyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality and Social Psychology, 76, 995-1006.

3

bu
y

30

bu
y

In the early days of parallel computing, we were obsessed with finding
the “right” parallel programming environment

Parallel program environments in the 90’s

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze
BSP
BlockComm
C*.
"C* in C
C**
CarlOS
Cashmere
C4
CC++
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran
Converse
Code
COOL

CORRELATE
CPS
CRL
CSP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC
DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel
Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX
GA
GAMMA
Glenda

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS
HPC
HPF
IMPACT
ISIS.
JAVAR
JADE
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM
Lilac
Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean
P4-Linda
Glenda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
p4-Linda
Pablo
PADE
PADRE
Panda
Papers
AFAPI.
Para++

Paradigm

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti
pC
pC++
PCN
PCP:
PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus
QPC++
PVM
PSI
PSDM
Quake
Quark
Quick Threads
Sage++
SCANDAL
SAM

pC++
SCHEDULE
SciTL
POET
SDDA.
SHMEM
SIMPLE
Sina
SISAL.
distributed smalltalk
SMI.
SONiC
Split-C.
SR
Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY
UC
V
ViC*
Visifold V-NUS
VPE
Win32 threads
WinPar
WWWinda
XENOOPS

XPC
Zounds
ZPL

With Choice overload in mind … what did we accomplish
with all these different options for parallel programming?

In the early days of parallel computing, we were obsessed with finding
the “right” parallel programming environment

Parallel program environments in the 90’s

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze
BSP
BlockComm
C*.
"C* in C
C**
CarlOS
Cashmere
C4
CC++
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran
Converse
Code
COOL

CORRELATE
CPS
CRL
CSP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC
DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel
Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX
GA
GAMMA
Glenda

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS
HPC
HPF
IMPACT
ISIS.
JAVAR
JADE
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM
Lilac
Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean
P4-Linda
Glenda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
p4-Linda
Pablo
PADE
PADRE
Panda
Papers
AFAPI.
Para++

Paradigm

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti
pC
pC++
PCN
PCP:
PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus
QPC++
PVM
PSI
PSDM
Quake
Quark
Quick Threads
Sage++
SCANDAL
SAM

pC++
SCHEDULE
SciTL
POET
SDDA.
SHMEM
SIMPLE
Sina
SISAL.
distributed smalltalk
SMI.
SONiC
Split-C.
SR
Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY
UC
V
ViC*
Visifold V-NUS
VPE
Win32 threads
WinPar
WWWinda
XENOOPS

XPC
Zounds
ZPL

Furthermore, engineering is a zero-sum game … time spent
chasing the next great programming model is time NOT

spent making the models we have actually work

The end of the crisis
• In the early 90’s, the HPC community was fed up with message

passing chaos. Driven largely by application developers, we created
MPI (version 1.0 released in 1994).

• In the late 90’s, the HPC community working in the Accelerated
Strategic Computing Initiative (ASCI) used their influence over which
HPC systems were purchased to “force” vendor’s hands to support a
standard for programming shared memory systems. The result was
OpenMP (version 1.0 released in 1997).

Portable parallel programming is important for the people who create HPC
applications. It took their direct involvement and dedication to create open

standards and end parallel programming chaos.

The major parallel Programming systems in 2024 …
well at least we have our act together in two cases. L

• In HPC, 3 programming environments dominate … covering the major classes of hardware.
– MPI: distributed memory systems … though it works nicely on shared memory

computers.

– OpenMP: Shared memory systems … more recently, GPGPU too.

– CUDA, OpenCL, Sycl, OpenACC, OpenMP … : GPU programming (use CUDA if you don’t
mind locking yourself to a single vendor … it is a really nice programming model)

50

Parallel programming with Python is terribly fragmented
dispy
Delegate
forkmap
forkfun
Jobibppmap
POSH
 pp
pprocess
processing
PyCSP
PyMP
Ray
remoteD
torcp
VecPy
batchlib
Celery
Charm4py
PyCUDA
Ramba

Dask
Deap
disco
dispy
DistributedPYthon
exec_proxy
execnet
iPython
job_stream jug
mpi4py
NetWorkSpaces
PaPy
papyrus
PyCOMPSs
PyLinda
pyMPI
pypar
multiprocessing
PyOpenCL

pyPastSet
pypvm
pynpvm
Pyro
Ray
Rthread
 ScientificPython.BSP
Scientific.DistrubedComputing.MasterSlave
Scientific.MPI
SCOOP
seppo
PySpark
Star-P
superrpy
torcpy
StarCluster
dpctl
arkouda
PyOMP
dpnp

Building on the list at https://wiki.python.org/moin/ParallelProcessing

Python programmers are locked
into the same dystopic world of

HPC in the 90’s.

History suggests that this won’t
get better until the python
applications community

demands (and dedicates
themselves) to a minimal set of

open, standard solutions

Conclusion
• Python is the language of choice for

most programmers … so let’s stop telling
them to learn C/C++ or Fortran to do
HPC

• PyOMP lets you write OpenMP code in
Python. Try it, you’ll like it.

• But we need your help …
– We need a user base. Please use it and tell us

about your successes and failures.

– Help drive convergence around a minimal
number of open, portable parallel programming
environments in Python. We all win if this
happens.

– We need more people to join the PyOMP team
and help us grow the technology. For
example, I want the OpenMP workshare
construct with fusion and array elision. I need
someone to work with us to make that happen.

52My Greenlandic skin-on-frame kayak in the middle of Budd Inlet during a negative tide

The OpenMP Common Core

#pragma omp parallel

void omp_set_thread_num()
int omp_get_thread_num()
int omp_get_num_threads()

double omp_get_wtime()

setenv OMP_NUM_THREADS N

#pragma omp barrier
#pragma omp critical

#pragma omp for
#pragma omp parallel for

reduction(op:list)

schedule (static [,chunk])
schedule(dynamic [,chunk])

shared(list), private(list), firstprivate(list)

default(none)

nowait

#pragma omp single

#pragma omp task
#pragma omp taskwait

The OpenMP Common Core

53

For many years now, we’ve
been teaching the subset of
OpenMP that is most commonly
used. We call this the
 OpenMP Common Core

We even wrote a book about it.

The list of items in the common
core were determined by
experience/anecdote … we
didn’t have hard data to drive
the analysis.

To learn more about
GPU programming with

OpenMP

54

The latest book on OpenMP …

A book about how to use OpenMP to
program a GPU (focusses on C and

C++ … not Python)

Extra content …

A tutorial introduction to PyOMP (for programmers new to OpenMP)

55

OpenMP* Overview

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTERC$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded
Applications

• A set of compiler directives and library routines for parallel
application programmers

• Greatly simplifies writing multi-threaded (MT) programs in Fortran,
C and C++

• Standardizes established SMP practice + vectorization and
heterogeneous device programming

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def hello():
 with openmp("parallel"):
 print("hello")
 print("world")

hello()
print("DONE")

PyOMP: OpenMP projected into Python
• A parallel multithreaded “hello world” program with PyOMP

57

PyOMP: OpenMP projected into Python
• A parallel multithreaded “hello world” program with PyOMP

58

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def hello():
 with openmp("parallel"):
 print("hello")
 print("world")

hello()
print("DONE")

OpenMP managed
through the with

context manager.

• Numba Just In Time (JIT) compiler compiles the Python code into LLVM thereby bypassing the
GIL. Hence, the threads execute in parallel.

• The string in the with openmp context manager is identical to the constructs in OpenMP. If you
know OpenMP for C/C++/Fortran, then you know it for Python

Numba Just In Time
(JIT) compiler

compiles the Python
code into LLVM.

Compiled code
cached for later use.

The code inside the with
context manager is

packaged into a function and
executed by each thread

“parallel” creates a team of threads

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def hello():
 with openmp("parallel"):
 print("hello")
 print("world")

hello()
print("DONE")

PyOMP: OpenMP projected into Python
• A parallel multithreaded “hello world” program with PyOMP

59

hello
world
hello
hello
hello
world
hello
world
hello
world
hello
world
world
world
hello
world
DONE

When I run this program,
here is the output.

The interleaved print
output is different each
time I run the program

Why is the output from our hello world
program so weird?

To answer that question, we must
digress briefly and settle on a few key

definitions

60

Concurrency vs. Parallelism
• Two important definitions:

– Concurrency: A condition of a system in which multiple tasks are active and unordered. If scheduled fairly,
they can be described as logically making forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the
same time.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

Concurrent, parallel Execution

Concurrent, non-parallel Execution
PE0

PE0

PE1

PE1

PE2

PE3

Time
PE = Processing Element

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def hello():
 with openmp("parallel"):
 print("hello")
 print("world")

hello()
print("DONE")

PyOMP: OpenMP projected into Python
• A parallel multithreaded “hello world” program with PyOMP

62

hello
world
hello
hello
hello
world
hello
world
hello
world
hello
world
world
world
hello
world
DONE

When I run this program,
here is the output.

The challenge for programmers writing multithreaded code is to make sure every
semantically allowed way statements can interleave results in correct code.

Lets dive into the details of
multithreading and how they are most

commonly used in an application

63

64

OpenMP Execution Model
Fork-Join Parallelism:

• Initial thread forks a team of threads as needed.
• They execute in a shared address space … All reads read/write a common set of the variables.
• When the team is finished, the threads join together and the initial thread continues
• Parallelism added incrementally until performance goals are met, i.e., the sequential program

evolves into a parallel program.
Parallel Regions

Initial
Thread
in red

A Nested
Parallel
region

Sequential Parts

The information on this page is subject to the use and disclosure restrictions provided on the second page to this document.

Understanding OpenMP

65

We will explain the key elements of OpenMP as we explore the three fundamental design patterns of
OpenMP (Loop parallelism, SPMD, and divide and conquer) applied to the following problem

def piFunc(NumSteps):
 step=1.0/NumSteps
 pisum = 0.0
 x = 0.5
 for i in range(NumSteps):
 x+=step
 pisum += 4.0/(1.0+x*x)
 pi=step*pisum
 return pi

66

The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can

safely execute when divided between a collection of threads.
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

67

The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can

safely execute when divided between a collection of threads.
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
 step=1.0/NumSteps
 pisum = 0.0
 x = 0.5
 for i in range(NumSteps):
 x+=step
 pisum += 4.0/(1.0+x*x)
 pi=step*pisum
 return pi

68

The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can

safely execute when divided between a collection of threads.
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
 step=1.0/NumSteps
 pisum = 0.0
 x = 0.5
 for i in range(NumSteps):
 x+=step
 pisum += 4.0/(1.0+x*x)
 pi=step*pisum
 return pi

A loop carried
dependency

69

The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can

safely execute when divided between a collection of threads.
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
 step=1.0/NumSteps
 pisum = 0.0
 x = 0.5
 for i in range(NumSteps):
 x+=step
 pisum += 4.0/(1.0+x*x)
 pi=step*pisum
 return pi

def piFunc(NumSteps):
 step=1.0/NumSteps
 pisum = 0.0

 for i in range(NumSteps):
 x=(i+0.5)*step
 pisum += 4.0/(1.0+x*x)
 pi=step*pisum
 return pi

A loop carried
dependency

Recast to
compute from i

This
dependency is

more
complicated. It’s

called a
reduction 70

The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can

safely execute when divided between a collection of threads.
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
 step=1.0/NumSteps
 pisum = 0.0
 x = 0.5
 for i in range(NumSteps):
 x+=step
 pisum += 4.0/(1.0+x*x)
 pi=step*pisum
 return pi

def piFunc(NumSteps):
 step=1.0/NumSteps
 pisum = 0.0

 for i in range(NumSteps):
 x=(i+0.5)*step
 pisum += 4.0/(1.0+x*x)
 pi=step*pisum
 return pi

A loop carried
dependency

Recast to
compute from i

Loop Parallelism code

71

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def piFunc(NumSteps):
 step = 1.0/NumSteps
 pisum = 0.0

 with openmp ("parallel for private(x) reduction(+:pisum)"):
 for i in range(NumSteps):
 x = (i+0.5)*step
 pisum += 4.0/(1.0 + x*x)

 pi = step*pisum
 return pi

pi = piFunc(100000000)

OpenMP managed through the with context manager.

Pass the OpenMP directive into the OpenMP context
manager as a string

• parallel: creates a team of threads
• for: maps loop iterations onto threads.
• private(x): each threads gets its own x
• Loop control index of a parallel for (i) is private to each thread.
• reduction(+:sum): combine sum from each thread using +

Numba Just In Time (JIT) compiler compiles the Python code into
LLVM thereby bypassing the GIL. Compiled code cached for
later use.

GIL: Global Interpreter Lock

72

Reduction
• OpenMP reduction clause added to a parallel for:

reduction (op : list)

• Inside the parallel for:
– Each thread gets a private copy of each

variable in list … initialized depending on the
“op”
(e.g., 0 for “+”).

– Updates to the reduction variable from each
thread happens to its private copy.

– The private copies from each thread are
combined into a single value … and then
combined with the original global value … all
using the op from the reduction clause.

• The variables in the “list” must be shared in the
enclosing parallel region.

from numba import njit
 from numba.openmp import openmp_context as openmp

 @njit
 def piFunc(NumSteps):
 step = 1.0/NumSteps
 pisum = 0.0

 with openmp ("parallel for private(x) reduction(+:pisum)"):
 for i in range(NumSteps):
 x = (i+0.5)*step
 pisum += 4.0/(1.0 + x*x)

 pi = step*pisum
 return pi

 pi = piFunc(100000000)

We don’t discuss the details here, but you can also add a reduction clause to a parallel or a for construct.

Numerical Integration results in seconds … lower is better

Intel® Xeon® E5-2699 v3 CPU with 18 cores running at 2.30 GHz.
For the C programs we used Intel® icc compiler version 19.1.3.304 as icc -qnextgen -O3 –fopenmp
Ran each case 5 times and kept the minimum time. JIT time is not included for PyOMP (it was about 1.5 seconds)

73

Threads
PyOMP C

Loop SPMD Task Loop SPMD Task

1 0.447 0.450 0.453 0.444 0.448 0.445

2 0.252 0.255 0.245 0.245 0.242 0.222

4 0.160 0.164 0.146 0.149 0.149 0.131

8 0.0890 0.0890 0.0898 0.0827 0.0826 0.0720

16 0.0520 0.0503 0.0517 0.0451 0.0451 0.0431

108 steps

Parallel Loop are great … but sometimes
you want more control over individual

threads

74

The information on this page is subject to the use and disclosure restrictions provided on the second page to this document.

Understanding OpenMP

75

We will explain the key elements of OpenMP as we explore the three fundamental design patterns of
OpenMP (Loop parallelism, SPMD, and divide and conquer) applied to the following problem

def piFunc(NumSteps):
 step=1.0/NumSteps
 pisum = 0.0
 x = 0.5
 for i in range(NumSteps):
 x+=step
 pisum += 4.0/(1.0+x*x)
 pi=step*pisum
 return pi

76

SPMD (Single Program Multiple Data) design pattern

• Run the same program on P processing elements where P can be arbitrarily large.
• Use the rank … an ID ranging from 0 to (P-1) … to select between a set of tasks and to manage any shared

data structures.

This pattern is very general and has been used to support most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is probably the most commonly used pattern in the history of parallel programming.

Replicate the program.

Add glue code

Break up the data

Third party names are the property of their owners

Single Program Multiple Data (SPMD)

77

from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_thread_num, omp_get_num_threads
MaxTHREADS = 32
@njit
def piFunc(NumSteps):
 step = 1.0/NumSteps
 partialSums = np.zeros(MaxTHREADS)
 with openmp(“parallel shared(partialSums,numThrds) private(threadID,i,x,localSum)”):
 threadID = omp_get_thread_num()
 with openmp("single"):
 numThrds = omp_get_num_threads()
 localSum = 0.0
 for i in range(threadID, NumSteps, numThrds):
 x = (i+0.5)*step
 localSum = localSum + 4.0/(1.0 + x*x)
 partialSums[threadID] = localSum
 return step*np.sum(partialSums)

pi = piFunc(100000000)

• omp_get_num_threads(): get N=number of threads
• omp_get_thread_num(): thread rank = 0…(N-1)
• single: One thread does the work, others wait
• private(x): each threads gets its own x
• shared(x): all threads see the same x

Deal out loop iterations as if a deck of cards (a cyclic distribution)
… each threads starts with the Iteration = ID, incremented by the
number of threads, until the whole “deck” is dealt out.

The data environment seen by OpenMP threads

• Variables can be shared or private.
– Shared variable: A variable that is visible (i.e. can be

read or written) to all threads in a team.
– Private variable: A variable that is only visible to an

individual thread.

• All the code associated with an OpenMP directive
(such as parallel or for), including the code in
functions called inside that code, is called a region. A
directive plus code in the immediate block associated
with it, is called a construct

• Rules for defining a variable as shared or private:
– A variable is shared if it is used before or after an

OpenMP construct, otherwise it is private.
– Variables can be made shared or private through clauses

included with a directive.

78

• The data environment is the collection of variables visible to the threads in a team.

from numba import njit
 from numba.openmp import openmp_context as openmp

 @njit
 def piFunc(NumSteps):
 step = 1.0/NumSteps
 pisum = 0.0
 with openmp ("parallel for reduction(+:pisum)"):
 for i in range(NumSteps):
 x = (i+0.5)*step
 pisum += 4.0/(1.0 + x*x)

 pi = step*pisum
 return pi

 pi = piFunc(100000000)

x first used inside the
OpenMP construct … it

is private.

Numerical Integration results in seconds … lower is better

Intel® Xeon® E5-2699 v3 CPU with 18 cores running at 2.30 GHz.
For the C programs we used Intel® icc compiler version 19.1.3.304 as icc -qnextgen -O3 –fiopenmp
Ran each case 5 times and kept the minimum time. JIT time is not included for PyOMP (it was about 1.5 seconds)

79

Threads
PyOMP C

Loop SPMD Task Loop SPMD Task

1 0.447 0.450 0.453 0.444 0.448 0.445

2 0.252 0.255 0.245 0.245 0.242 0.222

4 0.160 0.164 0.146 0.149 0.149 0.131

8 0.0890 0.0890 0.0898 0.0827 0.0826 0.0720

16 0.0520 0.0503 0.0517 0.0451 0.0451 0.0431

108 steps

How do we handle problems without such
regular structure or with complex load

balancing problems?

We do this in OpenMP with explicit tasks

80

81

Explicit tasks in PyOMP
• A task is a sequence of statements and an associated data environment. Lots of flexibility in how those

tasks are created, so handles irregular parallelism, recursive parallelism, and many other control structures.

• A common pattern … one thread creates explicit tasks and puts them in a queue. All the threads work
together to execute them. The single construct causes one thread to execute statements while the other
threads wait at a barrier at the end of the single. It’s perfect for task level parallelism.

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def irregularPar():
 with openmp("parallel"):
 with openmp("single"):
 StateVal = 1
 while (StateVal > 0):
 with openmp("task firstprivate(StateVal)"):
 BigComp(StateVal)
 StateVal = ExitYet()
 return

irregularPar()

An explicit task …
captures value of

the variable
StateVal and
calls BigComp.

Single: one thread does the work while the
other threads wait (and execute tasks) at the

barrier implied at the end of single

Returns a negative value at
some point (function not shown)

Divide and conquer design pattern
• Split the problem into smaller sub-problems; continue until the sub-problems can be

solved directly

3 Options for parallelism:
¨ Do work as you split

into sub-problems
¨ Do work at the

leaves
¨ Do work as you

recombine

Divide and conquer (with explicit tasks)

83

Solve

Split

Merge

Fork threads
and launch the
computation

• single: One thread does the work, others wait
• task: code block enqueued for execution
• taskwait: wait until task in the code block finish

@njit
def piFunc(NumSteps):
 step = 1.0/NumSteps
 sum = 0.0
 startTime = omp_get_wtime()
 with openmp ("parallel"):
 with openmp ("single"):
 pisum = piComp(0,NumSteps,step)

 pi = step*pisum
 return pi

pi = piFunc(100000000)

from numba import njit
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_num_threads, omp_set_num_threads
MIN_BLK = 1024*256
@njit
def piComp(Nstart, Nfinish, step):
 iblk = Nfinish-Nstart
 if(iblk<MIN_BLK):
 pisum = 0.0
 for i in range(Nstart,Nfinish):
 x= (i+0.5)*step
 pisum += 4.0/(1.0 + x*x)
 else:
 sum1 = 0.0
 sum2 = 0.0
 with openmp ("task shared(sum1)"):
 sum1 = piComp(Nstart, Nfinish-iblk/2,step)
 with openmp ("task shared(sum2)"):
 sum2 = piComp(Nfinish-iblk/2,Nfinish,step)
 with openmp ("taskwait"):
 pisum = sum1 + sum2
 return pisum

Numerical Integration results in seconds … lower is better

Intel® Xeon® E5-2699 v3 CPU with 18 cores running at 2.30 GHz.
For the C programs we used Intel® icc compiler version 19.1.3.304 as icc -qnextgen -O3 –fiopenmp
Ran each case 5 times and kept the minimum time. JIT time is not included for PyOMP (it was about 1.5 seconds)

84

Threads
PyOMP C

Loop SPMD Task Loop SPMD Task

1 0.447 0.450 0.453 0.444 0.448 0.445

2 0.252 0.255 0.245 0.245 0.242 0.222

4 0.160 0.164 0.146 0.149 0.149 0.131

8 0.0890 0.0890 0.0898 0.0827 0.0826 0.0720

16 0.0520 0.0503 0.0517 0.0451 0.0451 0.0431

108 steps

There is more …. But this is enough
to get you started with CPU

programming in PyOMP

So let’s wrap up our discussion of
CPU programming

85

with openmp("parallel"): Create a team of threads. Execute a parallel region
with openmp("for"): Use inside a parallel region. Split up a loop across the team.
with openmp("parallel for"): A combined construct. Same a parallel followed by a for.
with openmp ("single"): One thread does the work. Others wait for it to finish
with openmp("task"): Create an explicit task for work within the construct.
with openmp("taskwait"): Wait for all tasks in the current task to complete.
with openmp("barrier"): All threads arrive at a barrier before any proceed.
with openmp("critical"): Mutual exclusion. One thread at a time executes code
schedule(static [,chunk]) Map blocks of loop iterations across the team. Use with for.
reduction(op:list) Combine values with op across the team. Used with for

private(list) Make a local copy of variables for each thread. Use with parallel, for or task.
firstprivate(list) private, but initialize with original value. Use with parallel, for or task

shared(list) Variables shared between threads. Use with parallel, for or task.

default(none) Force definition of variables as private or shared.
omp_get_num_threads() Return the number of threads in a team
omp_get_thread_num() Return an ID from 0 to the number of threads minus one
omp_set_num_threads(int) Set the number of threads to request for parallel regions
omp_get_wtime() Return a snapshot of the wall clock time.
OMP_NUM_THREADS=N Environment variable to set the default number of threads

PyOMP subset of OpenMP for CPU programming

PyOMP subset of OpenMP for CPU programming
with openmp("parallel"): Create a team of threads. Execute a parallel region
with openmp("for"): Use inside a parallel region. Split up a loop across the team.
with openmp("parallel for"): A combined construct. Same a parallel followed by a for.
with openmp ("single"): One thread does the work. Others wait for it to finish
with openmp("task"): Create an explicit task for work within the construct.
with openmp("taskwait"): Wait for all tasks in the current task to complete.
with openmp("barrier"): All threads arrive at a barrier before any proceed.
with openmp("critical"): Mutual exclusion. One thread at a time executes code
schedule(static [,chunk]) Map blocks of loop iterations across the team. Use with for.
reduction(op:list) Combine values with op across the team. Used with for

private(list) Make a local copy of variables for each thread. Use with parallel, for or task.
firstprivate(list) private, but initialize with original value. Use with parallel, for or task

shared(list) Variables shared between threads. Use with parallel, for or task.

default(none) Force definition of variables as private or shared.
omp_get_num_threads() Return the number of threads in a team
omp_get_thread_num() Return an ID from 0 to the number of threads minus one
omp_set_num_threads(int) Set the number of threads to request for parallel regions
omp_get_wtime() Return a snapshot of the wall clock time.
OMP_NUM_THREADS=N Environment variable to set the default number of threads

Work sharing

Synchronization

Data
Environment

runtime
libraries

Par. Loop support

Fork threads

Environment

The view of Python from an HPC perspective

for I in range(4096):
 for j in range(4096):
 for k in range (4096):
 C[i][j] += A[i][k]*B[k][j]

Amazon AWS c4.8xlarge spot instance, Intel® Xeon® E5-2666 v3 CPU, 2.9 Ghz, 18 core, 60 GB RAM

We know better …
the IKJ order is more

cache friendly
for I in range(1000):
 for k in range(1000):
 for j in range (1000):
 C[i][j] += A[i][k]*B[k][j]And we picked a

smaller problem

PyOMP DGEMM (Mat-Mul with double precision numbers)

89

from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_wtime

@njit(fastmath=True)
def dgemm(iterations,order):

 # allocate and initialize arrays
 A = np.zeros((order,order))
 B = np.zeros((order,order))
 C = np.zeros((order,order))

 # Assign values to A and B such that
 # the product matrix has a known value.
 for i in range(order):
 A[:,i] = float(i)
 B[:,i] = float(i)

tInit = omp_get_wtime()
 with openmp("parallel for private(j,k)"):
 for i in range(order):
 for k in range(order):
 for j in range(order):
 C[i][j] += A[i][k] * B[k][j]

 dgemmTime = omp_get_wtime() - tInit

 # Check result
 checksum = 0.0;
 for i in range(order):
 for j in range(order):
 checksum += C[i][j]
 ref_checksum = order*order*order
 ref_checksum *= 0.25*(order-1.0)*(order-1.0)
 eps=1.e-8
 if abs((checksum - ref_checksum)/ref_checksum) < eps:
 print('Solution validates')
 nflops = 2.0*order*order*order
 print('Rate (MF/s): ',1.e-6*nflops/dgemmTime)

DGEMM PyOMP vs C-OpenMP

40

30

20

10

1 2 4 8 16
Number of threads

Ave. G
FLO

PS (B
illions of floating point ops per sec)

C with OpenMP

PyOMP

Matrix Multiplication, double precision, order = 1000, with error bars (std dev)

Intel® Xeon® E5-2699 v3 CPU, 18 cores, 2.30 GHz, threads mapped to a single CPU, one thread/per core, first 16 physical cores.
Intel® icc compiler ver 19.1.3.304 (icc –std=c11 –pthread –O3 xHOST –qopenmp)

250 runs for order
1000 matrices

PyOMP times
DO NOT include
the one-time JIT

cost of ~2
seconds.

… but remember,
the JIT’ed code

can be cached for
future use. It’s

straightforward to
hide the JIT cost.

And we can use PyOMP for GPU programming

91

The “BIG idea” Behind GPU programming

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) c[i] = a[i] + b[i];
}

int main () {
 int N = ... ;
 float *a, *b, *c;
 cudaMalloc (&a, sizeof(float) * N);
 // ... allocate other arrays (b and c)
 // and fill with data

 // Use thread blocks with 256 threads each
 vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}

92

Assume a GPU with
unified shared memory

… allocate on host,
visible on device too

int main() {
 int N = . . . ;
 float *a, *b, *c;

 a* =(float *) malloc(N * sizeof(float));

 // ... allocate other arrays (b and c)
 // and fill with data

 for (int i=0;i<N; i++)
 c[i] = a[i] + b[i];

}

Traditional Loop based vector addition (vadd)

Data Parallel vadd with CUDA

How do we execute code on a GPU:
The SIMT model (Single Instruction Multiple Thread)

93

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) c[i] = a[i] + b[i];
}

int main () {
 int N = ... ;
 float *a, *b, *c;
 cudaMalloc (&a, sizeof(float) * N);
 // ... allocate other arrays (b and c)
 // and fill with data

 // Use thread blocks with 256 threads each
 vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}

1. Turn source code into a
scalar work-item

2. Map work-items onto an
N dim index space.

4. Run on hardware
designed around the

same SIMT
execution model

3. Map data structures
onto the same index

space
This is CUDA code … the sort of code the

OpenMP compiler generates on your behalf

Note: The CUDA code defines a 1D grid. I show a 2D grid on this slide to make kernel execution and its relation to data more clear.

SIMT: One instruction stream maps onto many SIMD lanes

• SIMT model: Individual scalar instruction streams are grouped together for SIMD
execution on hardware

SL0 SL1 SL2 SL3 SL4 SL5 SL6 SL7

ld x
mul a
ld y
add
st y

A stream of
Scalar
instructions

NVIDIA calls this set of
work-items a warp

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

SIMD execution scheduled
across a fixed number of

SIMD Lanes (SL)

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache
Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

L1 Cache

L2 Cache

G
PU

 M
em

or
y

L2 Cache

L2 Cache L2 Cache

G
PU

 M
em

or
y

G
PU

 M
em

or
y

G
PU

 M
em

or
y

A Generic GPU (following Hennessey and Patterson)

A multithreaded SIMD
processor

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache
Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

L1 Cache

L2 Cache

G
PU

 M
em

or
y

L2 Cache

L2 Cache L2 Cache

G
PU

 M
em

or
y

G
PU

 M
em

or
y

G
PU

 M
em

or
y

A Generic GPU (following Hennessey and Patterson)

Private Memory (work-item)

Local Memory (work-group)

Global Memory (kernel)

Logical Memory Hierarchy

A Generic Host/Device Platform Model

• One Host and one or more Devices
– Each Device is composed of one or more Compute Units
– Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

97PE: processing element. The finest-grained processing element inside a GPU. Also known as a SiMD-lane or CUDA-core.

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

cache

G
PU

 M
em

ory

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

SIMD LanesSIMD Lanes

SIMD Lanes SIMD Lanes

Program
defines work

For a CPU

For a GPU

Work decomposed
into blocks

Work
decomposed into

work-items

Organized into
work-groups

One work-group per
compute-unit executing

Executing a program on CPUs and GPUs

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

cache

G
PU

 M
em

ory

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

SIMD LanesSIMD Lanes

SIMD Lanes SIMD Lanes

Program
defines work

For a CPU

For a GPU

Work decomposed
into blocks

Work
decomposed into

work-items

Organized into
work-groups

Enqueued for
execution

Mapped onto
threads for
execution

One work-group per
compute-unit executing

Executing a program on CPUs and GPUs

CPU/GPU execution models

For a CPU, the
threads are all
active and able

to make forward
progress.

For a GPU, any
given work-group

might be in the
queue waiting to

execute.

How do we map a loop onto the
GPU execution model in PyOMP?

101

Step 1: move code and data onto the GPU:
The target construct and default data movement

Host thread
Generating Task

Initial task

Target task

with openmp ("target"):
{
 target region,
can use A, B and N

}

Device Initial
thread

Host thread
waits for the

task region to
complete

A = numpy.ones(N)
B = numpy.ones(N) A, B and N

mapped to the
device

the arrays
A and B

mapped back to
the host

Based on figure 6.4 in Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017

Scalars and numpy arrays are moved onto the
device by default before execution.

Only the arrays are moved back to the
host after the target region completes

102

Step 2: Map loop iterations onto the GPU’s SIMD lanes
@njit
def main():
 N = 1024
 A = numpy.ones(N)
 B = numpy.ones(N)

 with openmp ("target "):
 with openmp ("loop"):
 for i in range(N):
 A[i] += B[i]

The loop construct tells the compiler:
“this loop will execute correctly if

the loop iterations run in any order.
You can safely run them

concurrently. And the loop-body
doesn’t contain any OpenMP

constructs. So do whatever you
can to make the code run fast”

103

The loop construct is a declarative construct. You
tell the compiler what you want done but you DO
NOT tell it how to “do it”. This is new for OpenMP

Step 2: Map loop iterations onto the GPU’s SIMD lanes
@njit
def main():
 N = 1024
 A = numpy.ones(N)
 B = numpy.ones(N)

 with openmp ("target "):
 with openmp ("loop"):
 for i in range(N):
 A[i] += B[i]

104

1. Variables created in host memory.

2. Scalar N and arrays A and B are copied
to device memory. Execution transferred to

device.

3. For-loop index variables (such as i) are
private in openmp regions

4. Loop iterations define the index space,
work-items, and work-groups.

5. After the OpenMP construct, arrays A
and B are copied from device memory

back to the host. Host resumes execution.

Difference from OpenMP/C: PyOMP only has NumPy arrays, which carry size
information. So, PyOMP arrays sent in full by default ... as it is with C static-arrays.

Loop Parallelism code naturally maps onto the CPU

105

from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp

@njit(fastmath=True)
def dgemm(iterations,N):

 # allocate and initialize numpy arrays
 # A, B and C of size N by N. <<< code not shown>>>

 with openmp("parallel for private(j,k)"):
 for i in range(N):
 for k in range(N):
 for j in range(N):
 C[i][j] += A[i][k] * B[k][j]

OpenMP constructs managed through
the with context manager.

Create a team of threads. Map loop iterations onto them

• parallel: creates a team of threads
• for: maps loop iterations onto threads.
• private(j,k): each threads gets its own j and k variables
• Loop control index of a parallel for (i) is private to each thread.

Loop Parallelism code naturally maps onto the CPU

106

from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp

@njit(fastmath=True)
def dgemm(iterations,N):

 # allocate and initialize numpy arrays
 # A, B and C of size N by N. <<< code not shown>>>

 with openmp(”target teams loop collapse(2) private(j)"):
 for i in range(N):
 for k in range(N):
 for j in range(N):
 C[i][j] += A[i][k] * B[k][j]

OpenMP constructs managed through
the with context manager.

Map the loop onto a 2D index space … the
loop body defines the kernel function

• target: map execution from the host onto the device
• teams loop: Map kernel instances onto PEs inside the compute units
• collapse(2): combine following two loops into a single iteration space.
• private(j): each threads gets its own j variable
• Indices of parallelized loops (i,k) are private to each thread.

PE: processing element. The finest-grained processing element inside a GPU. Also known as a SiMD lane or CUDA-core.

Implicit data movement covers a small subset of
the cases you need in a real program.

To be more general … we need to manage data
movement explicitly

107

Implicit data movement

• Previously, we described the rules for implicit data movement … N, A and B moved to the GPU on
entry to the target construct. A and B moved to the CPU on exit from the target construct.

• Notice that in this case, B is not changed on the GPU … moving it is a waste of resources

@njit
def main():
 N = 1024
 A = numpy.ones(N)
 B = numpy.ones(N)

 with openmp ("target"):
 for i in range(N):
 A[i] += B[i]

108

Controlling data movement with the map clause

@njit
def main():
 N = 1024
 A = numpy.ones(N)
 B = numpy.ones(N)

 with openmp ("target map(tofrom: A) map(to: B)"):
 for i in range(N):
 A[i] += B[i]

map(tofrom: A) Map data at the
start and end of target region.

map(to: B) map data at the start
of target region but NOT at the
end.

109

We use the term “map” since depending on the detailed memory architecture of the CPU
and the GPU, data may be in a shared address space so copying may not be needed.

PyOMP array notation

• When mapping data arrays, if you only give the array name then PyOMP
transfers the entire array (using the NumPy array metadata to determine the size)

• To transfer less than the full array, the array section syntax can be used
– array_name[begin:end]
– This follows Python/NumPy slicing syntax where begin is inclusive but end is exclusive.

A[N:M]. In set notation implies elements [N:M)
– Multi-dimensional arrays work as expected when transferred in full. Currently PyOmp doesn’t

support array-section syntax for multi-dimensional arrays.

110

C Difference: In C, arrays are usually dynamically allocated and referenced through a pointer. You
must use array-section syntax to move data. In C, array-syntax is “(initial-offset: number-of-items)”.
Fortran uses “begin:end” syntax (as Python does), but the ending index is inclusive (i.e., [begin:end]).

Controlling data movement: the map clause
– map(to:list): On entering the region, variables in the list are initialized on the device

using the original values from the host (host to device copy).
– map(from:list): At the end of the target region, the values from variables in the list are

copied into the original variables on the host (device to host copy). On entering the
region, the initial value of the variables on the device is not initialized.
– map(tofrom:list): the effect of both a map-to and a map-from (host to device copy at

start of region, device to host copy at end).
– map(alloc:list): On entering the region, data is allocated and uninitialized on the device.
– map(list): equivalent to map(tofrom:list).

111

When applied to an array, the mapping mode applies only to the array’s data. Array metadata is always
transferred as to and no operations which would change the metadata (e.g., resize) are permitted.

Note: Data
movement is
defined from

the
perspective of

the host.

@njit
def main():
 a = numpy.ones(N)
 b = numpy.ones(N)
 c = numpy.empty(N)
 with openmp ("target teams loop map(to: a,b) map(tofrom: c)"):
 for i in range(N):
 c[i] = a[i] + b[i]

Going beyond simple vector addition …

Using OpenMP for GPU application
programming … the heat diffusion problem

5-point stencil: the heat program

• The heat equation models changes in temperature over time.

• We’ll solve this numerically on a computer using an explicit finite difference discretisation.
• 𝑢 = 𝑢 𝑡, 𝑥, 𝑦 is a function of space and time.
• Partial differentials are approximated using diamond difference formulae:

𝜕𝑢
𝜕𝑡 ≈

𝑢 𝑡 + 1, 𝑥, 𝑦 − 𝑢 𝑡, 𝑥, 𝑦
𝑑𝑡

𝜕!𝑢
𝜕𝑥! 	≈

𝑢 𝑡, 𝑥 + 1, 𝑦 − 2𝑢 𝑡, 𝑥, 𝑦 + 𝑢(𝑡, 𝑥 − 1, 𝑦)
𝑑𝑥!

– Forward finite difference in time, central finite difference in space.

𝜕𝑢
𝜕𝑡 − 𝛼∇

!𝑢 = 0

113

5-point stencil: the heat program

• Given an initial value of 𝑢, and any boundary conditions, we can calculate the value of 𝑢	at time
t+1 given the value at time t.

• Each update requires values from the north, south, east and west neighbours only:

• Computation is essentially a weighted average of each cell and its neighbouring cells.
• If on a boundary, look up a boundary condition instead.

114

Heat diffusion problem …

Loop over time steps

 for _ in range(nsteps):

 # solve over spatial domain for step t

 solve(n, alpha, dx, dt, u, u_tmp)

 # Array swap to get ready for next step

 u, u_tmp = u_tmp, u

115

Array-swap on the host works. Why?

u and u_tmp are references to structs that
hold NumPy metadata and a data pointer.

 The OpenMP runtime creates a device
struct at the target enter data construct

and maintains a fixed association between
host and device struct references.

 Hence, as you swap the array variables,
the references to the struct addresses in

device memory are swapped.

5-point stencil: solve kernel

@njit
def solve(n, alpha, dx, dt, u, u_tmp):
 # Finite difference constant multiplier
 r = alpha * dt / (dx ** 2)
 r2 = 1 - 4 * r
 # Loop over the nxn grid
 for i in range(n):
 for j in range(n):
 # Update the 5-point stencil.
 # Using boundary conditions on the edges of the domain.
 # Boundaries are zero because the MMS solution is zero there.
 u_tmp[j, i] = (r2 * u[j, i] +
 (u[j, i+1] if i < n-1 else 0.0) +
 (u[j, i-1] if i > 0 else 0.0) +
 (u[j+1, i] if j < n-1 else 0.0) +
 (u[j-1, i] if j > 0 else 0.0))

116

25,000x25,000 grid for 10 time steps
* Xeon Platinum 8480+: 67.6 secs

Solution: parallel stencil (heat)
@njit
def solve(n, alpha, dx, dt, u, u_tmp):
 """Compute the next timestep, given the current timestep"""

 # Finite difference constant multiplier
 r = alpha * dt / (dx ** 2)
 r2 = 1 - 4 * r
 with openmp ("target loop collapse(2) map(tofrom: u, u_tmp)"):
 # Loop over the nxn grid
 for i in range(n):
 for j in range(n):
 u_tmp[j, i] = (r2 * u[j, i] +
 (u[j, i+1] if i < n-1 else 0.0) +
 (u[j, i-1] if i > 0 else 0.0) +
 (u[j+1, i] if j < n-1 else 0.0) +
 (u[j-1, i] if j > 0 else 0.0))

117

25,000x25,00 grid for 10 time steps
• Xeon Platinum 8480+: 67.6 secs
• Nvidia V100: 22.6 secs

Data Movement dominates…

Loop over time steps

 for _ in range(nsteps):

 # solve over spatial domain for step t

 solve(n, alpha, dx, dt, u, u_tmp)

 # Array swap to get ready for next step

 u, u_tmp = u_tmp, u

118

Typically, many time steps!

solve() function uses this context:
with openmp ("target loop collapse(2) map(tofrom: u, u_tmp)"):

For each iteration, copy from device
(2*N2)*sizeof(TYPE) bytes

25,000x25,00 grid for 10 time steps
• Xeon Platinum 8480+: 67.6 secs
• Nvidia V100: 22.6 secs

• We need to keep data resident on the device between target regions
• We need a way to manage the device data environment across iterations.

Target enter/exit data constructs

• The target data construct requires a structured block of code.
– Often inconvenient in real codes.

• Can achieve similar behavior with two standalone directives:
with openmp ("target enter data map(…"):
with openmp ("target exit data map(…"):

• The target enter data maps variables to the device data environment.
• The target exit data unmaps variables from the device data environment.
• Future target regions inherit the existing data environment.

119

Solution: Reference swapping in action
with openmp ("target enter data map(to: u, u_tmp)"):

pass

for _ in range(nsteps):

 solve(n, alpha, dx, dt, u, u_tmp);

 # Array swap to get ready for next step
 u, u_tmp = u_tmp, u

with openmp ("target exit data map(from: u)"):
pass

Copy data to device
before iteration loop

Change solve() routine to remove map clauses:
with openmp ("target loop collapse(2)”)

Copy data from device
after iteration loop

120

25,000x25,00 grid for 10 time steps
• Xeon Platinum 8480+ default data movement: 67.6 secs
• Nvidia V100 default data movement: 22.6 secs
• Nvidia V100 target enter/exit: 1.2 secs

Target update directive
• You can update data between target regions with

the target update directive.

with openmp ("target data map(to: A, B) map(from: C)"):

with openmp ("target"):
 {do lots of stuff with A, B and C}

with openmp ("target update from(A)"):
 {do something on the host}

with openmp ("target update to(A)"):
 pass

with openmp ("target"):
 {do lots of stuff with A, B and C}

map A on the
device to A on the
host.

map A on the host to A on the
device. Note: openmp
context body cannot be
empty so use “pass”

Set up the data
region ahead of
time.

Note: update directive has the transfer direction as the clause: e.g. update to(…)
 Compare to map clause with direction inside: map(to: …) 121

Data movement summary

• Data transfers between host/device occur at:
– Beginning and end of target region
– Beginning and end of target data region
– At the target enter data construct
– At the target exit data construct
– At the target update construct

• Can use target data and target enter/exit data to reduce redundant transfers.

• Use the target update construct to transfer data on the fly within a target data
region or between target enter/exit data directives.

122

