
OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
1

HORIZON-EUROHPC-JU-2023-COE 1 January 2024– 31 December 2026

Grant Agreement No 101143931

OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, RWTH Aachen University

Michael Klemm, OpenMP ARB



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
2

Who are Michael and Christian? (C+M)

OpenMP's development process (M)

OpenMP 6.0 base language improvements (M)

 Tasking updates (C)

 Loop transformations (M)

 Some other features (C)

Q&A (M+C)

Agenda



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
33

Who are Michael and Christian?



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
4

Michael …

Principal Member of Technical 

Staff

Works in HPC since 2003

Works on the Fortran OpenMP 

offload compiler for AMD Instinct™ 

Accelerators

Is a member of the OpenMP 

language committee since 2009

Chief Executive Officer of the 

OpenMP ARB since April 2016

Michael and Christian

 Christian …

… is a senior scientist at RWTH 

Aachen University and leads the 

HPC group

… does research on Parallel 

Programming and Performance

… is a member of the OpenMP 

language committee since 2008 

and co-chair of the Affinity subcom.

is co-author of the book "Using 

OpenMP - The Next Step", 

published by MIT Press



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
55

OpenMP's development process



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
6

OpenMP Architecture Review Board

The mission of the OpenMP ARB 
(Architecture Review Board) is to 
standardize directive-based 
multi-language high-level 
parallelism that is performant, 
productive and portable.

The OpenMP API moves 
common approaches into an 
industry standard to simplify
a developer’s life.



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
7

 Roadmap for the releases of the OpenMP API

5-year cadence for major releases, one minor release in between

OpenMP 5.2 was an additional release before OpenMP version 6.0

(At least) one Technical Report (TR) with feature previews in every year

OpenMP Roadmap

You are here.

Public Comment 
Draft (TR13)

Nov’23 Nov’24 Nov’25 Nov’26 Nov’27 Nov’28

OpenMP 6.0 TR14*

Nov’29

OpenMP 6.x

Public Comment 
Draft (TR18*)

OpenMP 7.0TR16*

Public Comment 
Draft (TR15*)

TR17*

* Numbers assigned to TRs may change if additional TRs are released.



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
8

OpenMP strives to

Support a useful subset of this spectrum

Provide a structured path from descriptive to prescriptive where needed

Continuum of Control

Descriptive

• Express “what”

• Ignore implementation

• Rely on quality of implementation

Prescriptive

• Express “how”

• Focus on implementation

• Expose control over 
execution

#pragma omp task

#pragma omp loop

#pragma omp for
#pragma omp for \

schedule(static,5)



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
9

Modifications of the OpenMP specification follow a (strict) process:

 Release process for specifications:

Development Process of the Specification

Proposal
Impl. 

in LaTeX
1st vote 2nd vote Verification

Merge to 
“mainline”

Draft
QA & 

Editing
Comment 

Draft
Correction, 
QA, Editing

Final Draft
ARB 

Approval



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
1010

OpenMP 6.0 base language improvements



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
11

 Complete support for C23

 Complete support for C++23

 Complete support for Fortran 2018

 Complete support for Fortran 2023

 There may be restrictions on using base language features, e.g.,

Fortran: cannot use data-sharing clauses with Co-Arrays

New Supported OpenMP Base Languages



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
12

 Fortran BLOCK constructs provide additional scopes:

Removes the need for OpenMP end directives

Helps privatize variables as part of their scope

Fortran BLOCK Constructs

subroutine hello()

use omp_lib

implicit none

integer :: tid

!$omp parallel private(tid)

tid = omp_get_thread_num()

print '(A,I4)’, &

'Hello from ‘, &

tid

!$omp end parallel

end subroutine

subroutine hello()

use omp_lib

implicit none

!$omp parallel

block

integer :: tid

tid = omp_get_thread_num()

print '(A,I4)’, &

'Hello from ‘, &

tid

end block

end subroutine



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
13

 C++ introduced attributes with C++11; C introduced it with C23:

C/C++ Attribute Syntax

template<typename T, typename F>

void process(std::vector<T> &input, std::vector<T> &output, F &&func) {

[[omp::directive(parallel for)]]

for (auto &&element : input) {

output.push_back(func(element));

}

}

template<typename T, typename F>

void process(std::vector<T> &input, std::vector<T> &output, F &&func) {

[[omp::sequence(directive(parallel),directive(for))]]

for (auto &&element : input) {

output.push_back(func(element));

}

}



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
1414

Tasking updates

Parts of the examples on these slides have been created by Stephen Olivier (SNL), chair of the Tasking subcommittee.



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
15

OpenMP 6.0 defines OpenMP threads as members of logical thread 
pool

Pool size can be specified by OMP_THREAD_LIMIT environment variable

OpenMP 6.0 also adds the concept of free-agent threads:

“free-agent threads” outside a team can execute tasks

 New threadset clause indicates which threads may execute the task:

 omp_team: only threads in the team (default)

 omp_pool: threads in the team AND unassigned threads in the contention 

group

Free-agent threads / 1



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
16

 Example:

Free-agent threads / 2

Task pool

Implicit Team

Initial Thread

Unassigned threads

// NO parallel masked NEEDED HERE!

while (elem != NULL) {

#pragma omp task threadset(omp_pool)

compute(elem);

elem = elem->next;

}

Balance of structured parallelism and free-agent threads governed by ICVs that can be 

controlled through OMP_THREADS_RESERVE:

setenv OMP_THREADS_RESERVE "structured(4),free_agent(2)"

In example above, four threads reserved for structured parallelism (assignment to teams) 

and two threads to act as free-agents



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
17

 taskgraph construct optimizes repeated tasks

Implementation creates a record of the sequence of tasks and dependences

Tasks replayable by default, use replayable(false) to disallow replay

The graph_reset clause can be used to discard the existing record

Taskgraph

while (residual > TOLERANCE) {

#pragma omp taskgraph graph_id(0)

{

for (j = 0; j < A_SIZE; ++j) {

#pragma omp task depend (out: A[j])

preprocess(A[j]);

#pragma omp task depend (in: A[j])

compute(A[j]);

}

}

residual = calc_residual(A);

}

…



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
18

 Support the depend and affinity clause in combination with the 

taskloop construct

Specify at the start of the loop body with the task_iteration directive

Task iteration

// Example: Dependencies between tasks within a taskloop as well as between taskloop and standalone task
#pragma omp taskloop nogroup
for (int i = 1; i < n; i++) {

#pragma omp task_iteration depend(inout: A[i]) depend(in: A[i-1])
A[i] += A[i] * A[i-1];

}

// TL2 taskloop + grainsize
#pragma omp taskloop grainsize(strict: 4) nogroup
for (int i = 1; i < n; i++) {

#pragma omp task_iteration depend(inout: A[i]) depend(in: A[i-4]) if ((i % 4) == 0 || i == n-1)
A[i] += A[i] * A[i-1];

}

// T3 other task
#pragma omp task depend(in: A[n-1])
printf("A[n-1] = %f\n", A[n-1]);



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
19

 Tasks can have dependencies on each other using the depend clause

Traditionally, these were limited to tasks siblings (same task or taskgroup)

Transparent tasks remove this limitation

 Use case: composable software components

Task dependencies can now be maintained with libraries

Deadlock freedom is still guaranteed

Transparent tasks

#pragma omp task depend(out: x)

{ ... }      // T1

#pragma omp task depend(out: y) transparent

{               // T2

#pragma omp task depend(inout: x)

{ ... }   // T3 – must wait on T1

}

#pragma omp task depend(in: x, y)

{ ... }      // T4 - must wait on T2, T3



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
2020

Loop transformations



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
21

 Loop unrolling is a standard tuning practice to reduce loop overhead 

and increase potential for pipeline.

Loop Unrolling

subroutine loop()

do i = 1, 4

call body(i)

end do

end subroutine loop

subroutine loop()

call body(i + 0)

call body(i + 1)

call body(i + 2)

call body(i + 3)

end subroutine loop

subroutine loop()

!$omp unroll full

do i = 1, 4

call body(i)

end do

end subroutine loop

 “full” completely unrolls the loop

Needs a compile-time constant upper 

bound.

Loop is no longer present after unrolling 

took place.



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
22

 Loop unrolling is a standard tuning practice to reduce loop overhead 

and increase potential for pipeline.

Loop Unrolling

subroutine loop()

do i = 1, n

call body(i)

end do

end subroutine loop

subroutine loop()

do i = 1, n, 4

call body(i + 0)

call body(i + 1)

call body(i + 2)

call body(i + 3)

end do

end subroutine loop

subroutine loop()

!$omp unroll partial(4)

do i = 1, n

call body(i)

end do

end subroutine loop

 “partial(f)” unrolls the loop with 

unroll factor f

Upper bound can now be a runtime value

Compiler will introduce remainder loops 

as necessary



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
23

 Tiling is a useful to optimize a loop nest for the cache hierarchy and 

exploiting temporal/spatial locality

Tiling

subroutine loop()

!$omp tile sizes(2,2)

do i = 1, n

do j = 1, m

call body(j, i)

end do

end do

end subroutine loop

subroutine loop()

do ii = 1, n, 2

do jj = 1, m, 2

do i = ii, ii + 2

do j = jj, jj + 2

call body(j, i)

end do

end do

end do

end do

end subroutine loop

Handling of partial tiles 
needed!



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
24

 Tiling is a useful to optimize a loop nest for the cache hierarchy and 

exploiting temporal/spatial locality

Tiling

subroutine loop()

!$omp tile sizes(2,2)

do i = 1, n

do j = 1, m

call body(j, i)

end do

end do

end subroutine loop i

j



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
25

 Tiling is a useful to optimize a loop nest for the cache hierarchy and 

exploiting temporal/spatial locality

Tiling

subroutine loop()

!$omp tile sizes(2,2)

do i = 1, n

do j = 1, m

call body(j, i)

end do

end do

end subroutine loop i

j



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
26

!$omp tile sizes(3,3)

do i = 1, n

do j = 1, m

call body(j, i)

end do

end do

One can think of tiling as “multi-dimensional” chunking:

Tiling and Chunking

i

j

i

j

!$omp for schedule(static, 3) &

collapse(2)

do i = 1, n

do j = 1, m

call body(j, i)

end do

end do



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
27

 Loop Interchange

 Loop Reversal

Other Loop Transformations /1

!$omp interchange permutation(3,1,2)

do i = 1, n

do j = 1, m

do k = 1, l

call body(j, i, k)

end do

end do

end do

do k = 1, l

do i = 1, n

do j = 1, m

call body(j, i, k)

end do

end do

end do

!$omp reverse

do i = 1, n

call body(i)

end do

do i = 1, n

call body(n – (i – 1))

end do



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
28

 Loop Fusion

 Loop Reversal

Other Loop Transformations /2

!$omp fuse

do i = 1, n

call body1(i)

end do

do i = 1, n

call body2(i)

end do

!$omp end fuse

do i = 1, n

call body1(i)

call body2(i)

end do

!$omp reverse

do i = 1, n

call body(i)

end do

do i = 1, n

call body(n – (i – 1))

end do



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
29

 Loop Index Splitting

 All these transformations can be useful:

Fusion: reduce loop overhead and get more work per loop iteration

Reversal: create forward memory references

Index splitting: peel off loop iterations, e.g., for better SIMD/memory alignment

Other Loop Transformations /3

!$omp split counts(k, omp_fill)

do i = 1, n

call body(i)

end do

do i = 1, k

call body(i)

end do

do i = k, n

call body(i)

end do



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
30

 Loop transformations can be composed, e.g., tiling and unrolling:

Composing Loop Transformations

!$omp tile sizes(2,2) &

apply(intratile:unroll full, & 

unroll full)

do i = 1, n

do j = 1, m

call body(j, i)

end do

end do

do ii = 1, n, 2

do jj = 1, m, 2

i = ii; j = jj

call body(j + 0, i + 0)

call body(j + 1, i + 0)

call body(j + 0, i + 1)

call body(j + 1, i + 1)

end do

end do



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
3131

Some other features

Parts of the examples on these slides have been created by Bronis de Supinski (LLNL), chair of the Language committee.



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
32

 Induction allows parallelization despite dependences

Iterative Computation: A result is calculated through repeated application of 

an operation.

Parallel Accumulation: These operations can be performed (at least partially) 

in parallel, with partial results being combined to form the final result.

Dependency or Ordering (sometimes): Unlike reductions where the order of 

operations is often irrelevant (e.g., summation), "inductive" processes 

sometimes might have some inherent order or dependency between the steps.

User-defined inductions / 1

xi = x0; 

result = 0.0;

#pragma omp parallel for reduction(+: result) induction(step(x), *: xi)

for (I = 0; I < N; i++) {

result += c[i] * xi;

xi *= x;

}



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
33

 User-defined inductions enable complex computations w/ dependences

Can use collector clause to specify closed form function to enable starting at 

arbitrary iterations: x_i = x_0 + (s * i) for step s

Here: amount added to struct’s member per iteration is not constant, but multiplied by l. index

User-defined inductions can be used with SIMD loops as well

User-defined inductions / 2

typedef struct{ float a; int b; } component;

void add(A *x, int st) { x->a += st; x->b += st; }

#pragma omp declare induction( op : \ /* name */

component : \ /* type */

int : \ /* step type */

add(&omp_out, omp_step)) \ /* inductor */

collector( omp_step = omp_index * omp_step )

component c = /* ... */;

#pragma omp parallel for induction( op : c : 5 )

for(int i=0; i<N; i++) { /* do sth else */ add(&c, 5); /* do sth else */ }



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
3434

Q&A



OpenMP 6.0 Part 1: New Host-side Features

Christian Terboven, Michael Klemm
35

20-Dec-2435

Contact:
https://www.pop-coe.eu
pop@bsc.es
@POP_HPC
youtube.com/POPHPC

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 101143931. The JU receives 
support from the European Union’s Horizon Europe research and innovation programme and Spain, Germany, France, Portugal and the Czech Republic.

Performance Optimisation and Productivity 3 
A Centre of Excellence in HPC


