
Scalable visualization of
Nsight Systems traces
with Paraver

Marc Clascà Ramírez
marc.clasca@bsc.es

October 2025 POP 3 Webinars

Contents of the webinar

1. Our analysis methodology and strategy

2. How nsys2prv works

3. Analysis with Paraver

a. Relevant metrics for accelerated workloads

b. Efficiency model

c. Following the lead of inefficiencies with applied examples

4. Useful links and resources

Tools overview

● System level parallel
performance analysis

● Timestamped events,
configurable semantics

● CUDA support improving
in progress

● Requires MPI for
distributed memory
applications

Extrae

● Configurable visualizations
via DSL

● Suitable for large number of
resources

Paraver

● Comprehensive
workload-level
performance

● System level information:
different runtimes and
hardware metrics

● Typical behaviors to study:
synchronization,
parallelization, data
movement

● Trace visualization
integrated, usable up to
~8 processes

NVIDIA Nsight
Systems

● Detailed CUDA kernel
performance

● Isolated kernel execution
information: requires
replaying

● Typical behaviors to study:
GPU utilization, kernel
implementation, memory
access

NVIDIA Nsight
Compute

How we understand performance analysis

1. Navigating through scales
2. Comparison and
quantification of differences

dynamic range allows to add up
knowledge from different scales of
time, resources, and data - in very
large scale runs

across different traces (how does a tuning
mechanism affect my execution?), or
within the same trace (how does the
microstructure of my application change
during time? or across processes?)

4

Enabling “large-scale” GPU analysis

• Large scale also means big “range” of scales
• Large scale also means different scale dimensions

Time Resources

• Macroscopic visualization
and aggregation of
metrics

• Microscopic runtime
behavior

• All in the same timeline
• Very long runs or trace

chops

Data

• Merging multiple reports
from multi-node
executions, only limited
by final trace size.

• Filter and select which
objects do you want to
see during analysis.

• 1 GPU -> 100s

• Performance information
can be combined,

• aggregated,
• filtered,
• operated with…

• different arithmetic and
semantic functions

5

Extrae

Application execution Trace Trace analysis

Paraver.

Performance metrics

Application

 Nsight
Systems

Application execution

CUDA
Application

Nsys report

.nsys
-rep

Translate

other tools

Nsys report

.nsys
-rep

Nsys report

.nsys
-rep

Nsys report

.nsys
-rep

What we propose

6

What does nsys2prv currently support?
🠊 Translate performance data acquired by Nsight Systems into Paraver timestamped records.

• CUDA API calls
• Kernels and memory copies (and related parameters)
• CUDA Graphs (node & graph level), instantiation and execution
• NCCL kernel execution and payload data (reduction operation, root rank, transfer size)
• GPU hardware counters
• NVTX regions
• OpenACC and MPI runtime calls…
• Operating System library calls
• POSIX pthread calls

🠊 Merge multiple .nsys-rep reports, coming from a multi-node execution, into a single trace.

🠊 And we provide all predefined configuration files for Paraver within the package to display all metrics
described in the article and in this presentation

7

Installing the translator

$> python -m venv analysis-venv
$> source analysis-venv/bin/activate
$> python -m pip install nsys2prv

How does it work?
Expandable
to other info!

Leverages Paraver
trace format

How do we translate a trace?

$> source analysis-venv/bin/activate
$> module load nsight-systems/2025.3
$> nsys2prv -t nvtx_pushpop_trace,cuda_api_trace,gpu_metrics \

-m ./llm_0.nsys-rep ./llm_1.nsys-rep ./llm_2.nsys-rep … llm_translated

Source reportsMulti-report flag Information to be translated

Basic visualizations

11

CUDA API calls

CUDA kernels

MPI calls

CUDA API calls + kernels @ 128 GPUs

CUDA API calls + kernels, launch lines @ 1 process zoom

Relevant metrics

2D Zoom range: spot metric
patterns in the timeline

2D histogram: paint frequency
(in time spent)of each value of
metric

Kernels in-flight

GPU usage gaps

12

Relevant metrics

Communication and
compute overlap

Legend. Number of kernels, including the
communication, running at the same time.
> 1 means overlap; 0 means no comm. going on;
1 means no overlap

Profile of time, percentage of
time wrt comms volume

Profile of time, percentage of
time wrt trace time

13

Relevant metrics

14

Tensor core usage
per GEMM kernel

GEMM nt 128x128x64
GEMM tn 128x128x64
GEMM nt 128x256x64
flash bwd dot do o
GEMM nn 128x128x64
GEMM nn 256x128x64
flash bwd convert dq
flash_bwd
flash_fwd
GEMM tn 256x128x64

Timeline of kernels, only GEMMs and flash

x̄
Tensor core usage in %, sampling

Relevant metrics

15

Tensor core usage
per GEMM kernel

GEMM nt 128x128x64
GEMM tn 128x128x64
GEMM nt 128x256x64
flash bwd dot do o
GEMM nn 128x128x64
GEMM nn 256x128x64
flash bwd convert dq
flash_bwd
flash_fwd
GEMM tn 256x128x64

Timeline of kernels, only GEMMs and flash

x̄
Tensor core usage in %, sampling Tensor core usage in %, averaged across GPUs

Relevant metrics

16

Tensor core usage
per GEMM kernel

GEMM nt 128x128x64
GEMM tn 128x128x64
GEMM nt 128x256x64
flash bwd dot do o
GEMM nn 128x128x64
GEMM nn 256x128x64
flash bwd convert dq
flash_bwd
flash_fwd
GEMM tn 256x128x64

Timeline of kernels, only GEMMs and flash

x̄
Tensor core usage in %, sampling

Averaged tensor usage in GEMM kernels

Tensor core usage in %, averaged across GPUs

Profile in next slide…

Relevant metricsTensor core usage
per GEMM kernel

GEMM nt
128x128x64

GEMM tn
128x128x64

GEMM nt
128x256x64

flash bwd
dot do o

GEMM nn
128x128x64

GEMM nn
256x128x64

flash bwd
convert dq flash bwd flash fwd

GEMM tn
256x128x64

TASK 1.1 50,14 59,91 30,49 21,39 52,47 70,45 0,87 41,14 43,12 68,27
TASK 1.2 47,53 60,13 30,66 16,42 51,3 71,12 0,81 32,07 28,55 66,41
TASK 1.3 48,29 59,39 30,61 12,96 51,6 70,19 0,91 23,91 19,85 63,37
TASK 1.4 47,48 59,81 30,43 12,71 49,28 68,63 0,85 25,37 20,87 65,53
TASK 1.5 47,08 59 29,87 18,9 48,37 68,69 0,86 36,95 36,9 64,39
TASK 1.6 47,02 57,45 29,2 17,83 48,57 69,27 0,85 28,37 23,06 63,82
TASK 1.7 45,18 57,71 30,34 18,56 49,32 67,3 0,92 24,3 17,54 61,43
TASK 1.8 45,74 56,42 29,85 22,77 48,83 63,56 1,03 37,4 37,03 61,15
TASK 1.9 47,34 58,93 30,6 14,69 50,22 67,25 0,86 24,68 19,58 65,46
TASK 1.10 49,51 60,07 29,49 15,17 51,36 71,36 0,91 25,91 20,96 66,13
TASK 1.11 46,4 56,95 30,62 22,56 48,55 64,82 0,97 29,61 24,92 61,54
TASK 1.12 47,16 58,46 29,62 20,64 48,26 68,45 0,91 34,93 33,67 64,24
TASK 1.13 45,67 57,65 28 29,73 50,38 57,67 1 13,5 6,31 56,64
TASK 1.14 49,89 59,44 30,94 16,95 51,96 72,83 0,9 41,82 45,11 66,75
TASK 1.15 47,59 58,95 29,18 16,41 49,23 70,77 0,94 32,47 30,63 66,17
TASK 1.16 46,96 58,64 30,97 14,92 49,18 68,59 0,91 28,96 24,03 64,11
Average 47,44 58,68 30,05 18,29 49,93 68,18 0,91 30,09 27,01 64,09
Maximum 50,14 60,13 30,97 29,73 52,47 72,83 1,03 41,82 45,11 68,27
Minimum 45,18 56,42 28 12,71 48,26 57,67 0,81 13,5 6,31 56,64
StDev 1,39 1,11 0,78 4,24 1,36 3,56 0,06 7,13 9,92 2,75
Avg/Max 0,95 0,98 0,97 0,62 0,95 0,94 0,88 0,72 0,6 0,94

1. High variability between
GPUs in flash_attn kernels

2. Different usage depending
on GEMM type…

3. Very different behavior of
specific GPU in some kernels
(usually lower, sometimes
higher)

Profile of average tensor core
utilization wrt peak, in %

17

Efficiency model for GPU traces

18

Device Global Efficiency

Device Parallel Efficiency

Load Balance Communication
efficiency

Orchestration
efficiency

Complementary
metrics

● Computation /
communication
overlap (stream
level)

● Inflight kernels
● CUDA Graphs

ready?
● Hardware

metric
aggregation

● Tensor usage in
GEMMs

● Data exchange

Quantifies how
much time the
devices are idle
due to one device
spending more time
in useful work
than others.

Quantifies how
much time the
devices are busy
due to data
movements.

Quantifies how
much time the
devices are idle
because there is
no pending work
to do.

Computational
scalability

WIP
● Tensor Core

usage?
● Occupancy

scalability?
● Active warp

scheduling?
● Executed

instructions?
● SM issue rate?
● …

Efficiency model for GPU traces

LB_eff.cfg
LB_eff.cfg

LB_eff.cfg

Configuration files

Applied examples

Useful time and load
balance

Addition of all “useful” time
(compute kernels). Avg/Max is a
metric for Load Balance

GPU 13 shows higher kernel
duration times steadily across
the training step

20

Load imbalance in backward phase

Putting the pieces all together

• Microscopic behavior
• Tensor core utilization differences
• Specific GPU shows worse performance in for some GEMMs and for the flash attention

kernels
• Macroscopic effects

• 92% of Load balance efficiency. Not bad but considerable in only 16 GPUs run, could go
worse when scaling up

• Impacts communication phase at the end of the step (other GPUs have to wait)
• We see a higher execution time for the same specific GPU observed earlier

• 🚧 Research currently in progress with HPAI group @ BSC

21

Applied examples
Are all GEMMs born equal?

22

Histogram of kernel duration for
different GEMM kernels

One mode
Multimodal?

Bimodal?

Bimodal?

Applied examples
Are all GEMMs born equal?

23

Idle
NCCL AllReduce
GEMM nn tilesize 128x128x64
GEMM nt tilesize 256x128x64

Applied examples
Are all GEMMs born equal?

24

Idle
NCCL AllReduce
GEMM nn tilesize 128x128x64
GEMM nt tilesize 256x128x64

Kernel

NVLink act.

DRAM BW

Tensor act.

INST issued

Green longer Blue longer

Putting the pieces all together

• Comparing the microscopic behavior at different moments on the trace
• HW metrics show internal kernel behavior, at us level
• Gives insight about the effects of overlapping communication with compute

• 🚧 Research currently in progress with HPAI group @ BSC

25

Useful links

• Package repository: https://gitlab.pm.bsc.es/beppp/nsys2prv

• Documentation: https://gitlab.pm.bsc.es/beppp/nsys2prv/-/wikis/Home

• Basic usage

• Feature status

• Troubleshooting

• CFGs for the presented metrics included in the repo!

• And don’t miss the opportunity: if you have a use case, apply for a POP

assessment! :)

https://gitlab.pm.bsc.es/beppp/nsys2prv
https://gitlab.pm.bsc.es/beppp/nsys2prv/-/wikis/Home

