
Presenter: William JALBY

ASSESSING CPU CODE QUALITY:
COMPILER COMPARISON

UVSQ/UPSaclay: E. Oseret, K. Camus, C. Valensi, H. Bollore,

Machine time donation: MEGWARE, CALMIP, IT4I, AWS

MAQAO: Modular Assembly Quality Analyzer and Optimizer

• Objectives:
• Characterizing performance of HPC applications
• Guiding users through optimization process
• Estimating return of investment (R.O.I.)

• Characteristics:
• Support for Intel / AMD x86-64 and AArch64 (beta version)

• Work in progress on GPU Support: integrating other tools output or building on primitives (HSA)

• Modular tool offering complementary views
• LGPL3 Open Source software
• Binary release available as static executable

• Operating principle: Analysis at Binary Level
• Compiler optimizations increase the distance between the executed code and the source

code
• Source code instrumentation may prevent the compiler from applying certain

transformations

➔What You Analyse Is What You Run

2

• High level summary
• Checking analysis validity
• Detecting performance issues
• Assessing optimisation complexity
• Estimating gain for addressing each

performance issue

• Code quality metrics at global and
loop level

• Hints for improving performance
with associated expected speedup

• Detailed analyses results

MAQAO ONE View: Performance View Aggregator

3

OUTLINE

• Motivating example

• Identifying potential compiler issues

• A few examples

IMPORTANT: Input/comments are welcome. Project is still very flexible

MOTIVATING EXAMPLE CONTEXT

• TARGET CODE: HACC MK (Livermore: LLNL)

• Target hardware: AMD EPYC 9654 96-Core Processor (2 x 96 cores) provided
by MEGWARE

• Two compilers:
• AMD clang version 16.0.3 (CLANG: AOCC_4.1.0-Build#270 2023_07_10)
• GNU C17 13.2.0 -march=znver4 ….
• clang based Intel(R) oneAPI DPC++/C++ Compiler 2024.0.0 (2024.0.0.20231017)

• For each compiler 16 flags were tested.

• Linux 5.14.0-427.18.1.el9_4.x86_64 #1 SMP PREEMPT_DYNAMIC Tue May 28
06:27:02 EDT 2024

• Systematic test/benchmarking effort carried out in QaaS project (Quality as a
Service)

COMPILER OPTIONS FOR AOCC

16 “standard” compiler options with different optimization levels (O2 and O3), different vector lengths, ….

Orthogonal choice

option # flags

1O3 -march=znver4
Reference O3 option

pattern (essentially on
Vectorization)

2O3 -march=znver4 -mprefer-vector-width=512
3O3 -march=znver4 -mprefer-vector-width=256
4O3 -march=znver4 -fno-vectorize -fno-slp-vectorize -fno-openmp-simd
5O2 -march=znver4

Reference O2 option
pattern (essentially on

Vectorization)

6O2 -march=znver4 -mprefer-vector-width=512
7O2 -march=znver4 -mprefer-vector-width=256
8O2 -march=znver4 -fno-vectorize -fno-slp-vectorize -fno-openmp-simd
9O3 -march=znver4 -flto

Reference O3 option
pattern + FLTO

10O3 -march=znver4 -mprefer-vector-width=512 -flto
11O3 -march=znver4 -mprefer-vector-width=256 -flto
12O3 -march=znver4 -fno-vectorize -fno-slp-vectorize -fno-openmp-simd -flto
13O2 -march=znver4 -flto

Reference O2 option
pattern + FLTO

14O2 -march=znver4 -mprefer-vector-width=512 -flto
15O2 -march=znver4 -mprefer-vector-width=256 -flto
16O2 -march=znver4 -fno-vectorize -fno-slp-vectorize -fno-openmp-simd -flto

PERFORMANCE RESULTS FOR AOCC

O3 in green, O2 in blue
LOWER

IS

BETTER

PERFORMANCE RESULTS FOR MULTIPLE COMPILERS

AOCC 10x

slower than

ICX !!

PERFORMANCE RESULTS FOR MULTIPLE COMPILERS

PROBLEMS WITH AOCC

➢Big performance difference is linked with math library use

➢AOCC by default uses the libm installed and not its own libalm (AMD Libm). This library

is installed separately from the compiler.

FIRST FIX: we forced libalm use: unfortunately no performance gain.

SECOND FIX: since ICX did not show any time spent in math library, try to suppress math
library use: in fact add fastmath flag to AOCC so it will force inlining and suppressing lib
calls.

ICX uses –fastmath by default.

This time it worked, performance very similar between AOCC and ICX

WHAT’S HAPPENING WITH AOCC

➢LESSON 1 (old news): try multiple compiler options.

➢LESSON 2: try multiple compilers and back port some optimizations
from the best performing compilers (for example compiler flags or
compiler directives).

➢LESSON 3: THE REAL ONE: try to analyze and detect compiler failures
systematically.

For using LESSON3, you need tools…..

MAIN LESSONS

Why analyzing compiler outputs? evaluating code quality

First target: code developer: Overall goal improve Application performance and to a lesser extent
application performance portability

➢ Analyze impact of compiler versions: provides a better answer than a simple GO/NOGO

➢ Analyze impact of compiler switches and identify best compiler switches

➢ Analyze differences in compiler behavior (across different compilers)

• Select the best compiler

• Import optimization from one compiler to the other one: for example compiler B has
vectorized a loop which was not vectorized by the user preferred compiler A. Insert
vectorization directive to the corresponding loop, working around probably a deficient data
dependence analysis.

➢ Perform a global compiler comparison across multiple compilers: perform performance portability
analysis. This might be very useful for ISV and library developers.

ANALYZING COMPILER OUTPUTS: GOALS (1)

Why analyzing compiler outputs? evaluating code quality

Second target: compiler developer. Overall goal improve compiler quality and help platform migration

➢ Analyze impact of compiler versions (same as application developer)

➢ Analyze impact of compiler switches and identify best compiler switches

➢ Analyze differences in compiler behavior (across different compilers)

• Perform a competitive positioning

• Import optimization from one compiler to the other one

• Facilitate migration, application port by identifying strength weakness of compilers: can help
benchmarking teams

Third target: benchmark (before sales), after sales support. Overall goal improve application performance (same
as application developer

➢ Help the app developer and/or the user to fully exploit system capabilities

➢ Globally: very similar to the app developer but with less knowledge on the application and more knowledge
on the software stack

ANALYZING COMPILER OUTPUTS: GOALS (2)

How to assess code quality ?

“The proof is in eating the cake”: use time as a main figure of merit to assess code quality: the
faster is the better.

Three levels of comparison are useful and necessary!:

1. At the whole application

2. At the function level

3. At the loop level

Levels 2 and 3 complement level 1 because two compilers can achieve similar performance
level at the whole application level but with very different performance at the function/loop
level (compensation effect).

ANALYZING COMPILER OUTPUTS: METHODOLOGY (1)

Main limitations of timing analysis:

1) Timing analysis requires runs on the same machine: otherwise, comparison is unfair and
is impacted by architecture differences

2) Timings are measured at the binary level and therefore are associated with binary code
fragments. Main difficulty in comparison is matching functions and loops:

➢ Make sure that that 2 function names (generated by two different compilers)
correspond to the same function at the source code level.

➢ Same issues with loops except that additionally the same source code loop might
have multiple binary versions

Performing timing at the source level would require probe insertion at the source code level
which would distort potentially code behavior.

LIMITATIONS OF TIMING ANALYSIS (1)

For both functions and loops, the main idea/technique is very similar. Let us focus on the more complex
one i.e. loops.

➢ Connecting ASM code and source code

▪ Relying on compiler info –g option allows to establish link between binary and source code.

➢ Dealing with multiple code versions

▪ Goal: Grouping all of the versions together

▪ Use ASM/source code connection (cf above).

▪ Allow some approximation in source line numbers: code section from lines 72 to 81 is probably
equivalent to code section from lines 71 to 82.

▪ Multiple ASM pointing to the same code section are likely to correspond to multiple versions

REMARK 1: approximation in source line numbers does not work with very short size loops (cf array
statements)

REMARK 2 : for matching functions, going through source code is easier and more efficient because in
general there are not multiple versions of the same function

RESOLVING FUNCTION/LOOP MATCHING

Main limitations of timing analysis (follow up):

3) The “Proof is in eating the cake” does not tell you anything about the cook or the recipe. Often
you need to understand why there is a timing difference.

Using other metrics (stalls, cache level access rate) than time will provide additional interesting
info but will suffer from the same problem.

Comparing Compiler Optimization report is very promising and it provides some info about the
code generation process.

However, Compiler Optimization reports:

➢ Don’t give, in general, details on failures/shortcomings of the compilation process

➢ Are proprietary in particular for proprietary compilers

➢ Are not standardized therefore extremely difficult to compare compilers.

LIMITATIONS OF TIMING ANALYSIS (2)

Focus on loops: innermost/in between/outermost

➢ Focus on assembly code (main compiler output)..

➢ Evaluate ASM using CQA (Code Quality Analysis) included in MAQAO.

➢ Generic topics of interest

• Port / FU usage

• Vectorization

• Instruction set use

• Vectorization Roadblocks

• Data access

➢ Use simplified simulation tools (such as CQA/UFS) to get performance estimations; critical for comparing ASM

versions

By looking directly at ASM, both compiler mistakes but also source code issues will be taken into account.

ANALYZING CODE QUALITY (1)

Two level analysis

• Static at the ASM level denoted (SA) in next slides

• Dynamic requiring measurement at execution denoted (DT) in the sequel

• All static metrics/issues are detected by CQA (Code Quality Analysis included in
MAQAO) while dynamic rely on MAQAO instrumentation at binary level

• Dynamic profiling is also essential to assess loop relative cost.

ANALYZING CODE QUALITY (2)

Classify performance issues into 5 main categories

1. Loop computation: issues related to the computation
organization.

2. Control Flow: issues relevant to control

3. Data access: issues essentially related to memory operations

4. Vectorization roadblocks: issues preventing vectorization

5. Inefficient vectorization: issues related to vectorization quality

ANALYZING CODE QUALITY (3)

LOOP COMPUTATION ISSUES

ISSUES

Presence of reductions dependency cycles (SA)

Presence of expensive FP instructions: div/sqrt, sin/cos, exp/log, etc…(SA)

Presence of special convert instructions: moving between different FP format (SA)

Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA (SA)

Large loop body: over micro-op cache size (SA)

Presence of a large number of scalar integer instructions: more than 1.1 x speedup when

suppressing scalar integer instructions (SA)

Bottleneck in the front end (SA)

Low iteration count (DT)

Highly variable Cycle per Iteration across loop instances (DT)

CONTROL FLOW ISSUES

ISSUES

Presence of calls (SA)

Presence of 2 to 4 paths (SA)

Presence of more than 4 paths (SA)

Non-innermost loop (SA)

Low iteration count (DT)

VECTORIZATION ROADBLOCKS

ISSUES

Presence of calls (SA)

Presence of 2 to 4 paths (SA)

Presence of more than 4 paths (SA)

Presence of reductions dependency cycles (SA)

Presence of constant non unit stride data access (SA)

Presence of indirect access (SA)

Non innermost loop (SA)

VECTORIZATION EFFICIENCY ISSUES

ISSUES

Partial or unexisting vectorization (SA)

Presence of expensive instructions : scatter/gather (SA)

Presence of special instructions executing on a single port (SA): typically

all data restructuring instructions, expand, pack, unpack, etc…

Use of shorter than available vector length (SA)

Use of masked instructions (SA)

Time spent in peel/tail loop greater than time spent in main loop (DT)

CASE STUDY 1

SPMXV: Sparse Matrix Vector operations

Test code developed by RWTH Aachen.

Essential kernel for iterative method.

A few key characteristics:

➢ Outermost loop (on i)
▪ Fully parallel
▪ Very large iteration count

➢ Innermost loop (on nz):
▪ Reduction
▪ Low iteration (typically less than 15)
▪ Regular sweep on Array A and indirect access on array x

SPMXV: A VERY SIMPLE CODE

HARDWARE CONFIGURATION

➢ Skylake : Intel(R) Xeon(R) Platinum 8170 CPU @ 2.10GHz3)

➢ 2 x 26 Cores

➢ 2.1 GHz

SOFTWARE CONFIGURATION

➢ OPENMP parallel: 52 threads

➢ Linux 6.10.10-arch1-1 #1 SMP PREEMPT_DYNAMIC

➢ GCC: GNU C++17 14.2.1 20240910 -march=skylake-avx512

➢ ICX: clang based Intel(R) oneAPI DPC++/C++ Compiler 2024.2.1
(2024.2.1.20240711) -g -fiopenmp -march=native -O3

SPMXV TESTS : HARD / SOFT CONFIGURATION

SPMXV COMPARE: GCC VERSUS ICX

INNERMOST LOOP COMPARISON

• GCC remains scalar

• ICX vectorizes

• All in all, very similar loop timings

OPENMP COMPARISON

• OpenMP overheads are very similar in both cases

• Matching OpenMP libraries between 2 different compilers is not easy.

GCC DETAILED LOOP ANALYSIS

ICX DETAILED LOOP ANALYSIS (1)

ICX DETAILED LOOP ANALYSIS (2)

ICX DETAILED LOOP ANALYSIS (3)

SPMXV: AGGREGATE RESULTS (1)

Single aggregation is performed: first for each compiler, various issues are aggregated

across key loops (see below)

Double aggregation is also performed: issues are aggregated between compilers.

SPMXV: SINGLE AGGREGATION (2)

SPMXV: DOUBLE AGGREGATION (3)

CASE STUDY 2

OpenRADIOSS

OPENRADIOSS AND RADIOSS

HARDWARE CONFIGURATION

➢ Skylake : Intel(R) Xeon(R) Platinum 8170 CPU @ 2.10GHz3)

➢ 2 x 26 Cores

➢ 2.1 GHz

SOFTWARE CONFIGURATION

➢ MPI 26 Process OPENMP 2 Threads

➢ Linux 6.10.10-arch1-1 #1 SMP PREEMPT_DYNAMIC

➢ Intel(R) Fortran 24.0-1693

➢ Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.13.1 Build 20240703_000000

OpenRadioss TESTS : HARD / SOFT CONFIGURATION

OpenRadioss COMPARE IFORT VERSUS IFX

MPI + OPENMP COMPARISON

• OpenMP difference : 7.3 sec

• MPI difference : around 2.7 sec

• OpenMP + MPI account for 10sec difference still far from the whole app level difference:

35 sec

OpenRadioss : LOOP COMPARISON

OpenRADIOSS: AGGREGATE RESULTS (1)

Single aggregation is performed: first for each compiler, various issues are aggregated across key

loops (see below)

Double aggregation is also performed: issues are aggregated between compilers.

OpenRadioss: SINGLE AGGREGATION (2)

OpenRadioss: DOUBLE AGGREGATION (3)

WRAP UP/CONCLUSIONS (1)

• Code quality generated by the compiler is of primary importance: this
quality is highly dependent upon compiler and compiler options. Looking
for the best compiler options can be extremely expensive in particular
through brute force search

• Performing systematic exploration of compiler flags and compilers is
mandatory but not enough.

We need to go further

WRAP UP/CONCLUSIONS (2)

We need to go further

• Performing a detailed assessment of code quality is therefore very
important

• CQA/MAQAO/ONEVIEW (www.maqao.org) provides an efficient way of
assessing code quality by
• identifying compiler shortcomings/failures

• Comparing between options and compilers

• These tools and methodology will be very useful for
• Helping code developers finding the right compiler directives

• Helping compiler developer improving/fixing their software

http://www.maqao.org/

Website & resources

• MAQAO website: www.maqao.org
• Mirror: maqao.exascale-computing.eu

• Documentation: www.maqao.org/documentation.html
• Tutorials for ONE View, LProf and CQA

• Lua API documentation

• Latest release: www.maqao.org/downloads.html
• Binary releases (2-3 per year)

• Core sources

• Publications: www.maqao.org/publications.html

• Email: contact@maqao.org

• Results: http://datafront.exascale-computing.eu/public/

49

http://www.maqao.org/
https://maqao.exascale-computing.eu/
http://maqao.exascale-computing.eu/documentation.html
http://maqao.exascale-computing.eu/documentation.html
https://maqao.exascale-computing.eu/download.html
http://maqao.exascale-computing.eu/documentation.html
http://maqao.exascale-computing.eu/publications.html
mailto:contact@maqao.org
http://datafront.exascale-computing.eu/public/

THANKS FOR YOUR ATTENTION

Questions ?

BACKUP SLIDES

MAQAO Framework Progress – ECR Q1 Review – 2024/05/23

OPTIMIZATION SUMMARY HACC MK COMPILED WITH AOCC

COMPARING LOOP ASSEMBLY CODES

Comparing AOCC, GCC and ICX

LOOKING AT LOOP ASSEMBLY CODES (ZOOM)

Focussing on AOCC versus GCC

Library use can be easily monitored and analyzed.

55

DIVING INTO LIBRARY USE (1)

.

56

DIVING INTO LIBRAY USE (2)

DEALING WITH FULL APPLICATIONS: GROMACS

ONE View Reports Levels

ONE View ONE
• Requires a single run of the application
• Profiling of the application and static analysis on loop hotspots
• Allows to identify main bottlenecks, estimate complexity of resolution and expected

associated speedup

Scalability mode
• Multiple executions with varying parallel configurations
• Allows to evaluate scalability or parallel behaviour of applications

Comparison mode
• Comparison of multiple runs (iso-binary or iso-source)
• Allows to perform detailed comparative analysis across different datasets, compilers,

hardware platforms, runtimes, …

Stability mode
• Multiple runs with identical parameters
• Allows to assess the execution time stability

58

MAQAO Ecosystem

❑ Historical partnerships
• CEA (French Department of Energy) Since 1990 and first MAQAO version on Itanium and

long term partnership on application analysis, optimization and tools

• ATOS: since 1990: compilers, performance tools and applications benchmarking and
optimization

• INTEL: since 2000: compilers, numerical libraries and performance tools

❑ Recent partnerships
• AWS
• SiPearl

❑ Current Projects
• Exascale Computing Research (ECR): UVSQ, Intel (2005-2020) and CEA
• EMOPASS (European Processor Initiative)
• European Centers of Excellence : TREX, POP2, POP3

❑ Partner of the VI-HPS consortium

❑ Past projects: H4H, COLOC, PerfCloud, ELCI, MB3, ...
59

09-Jan-24 60

Contact:
https://www.pop-coe.eu
pop@bsc.es
@POP_HPC
youtube.com/POPHPC

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 101143931. The JU receives
support from the European Union’s Horizon Europe research and innovation programme and Spain, Germany, France, Portugal and the Czech Republic.

Performance Optimisation and Productivity 3
A Centre of Excellence in HPC

