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• Getting good parallel performance is hard!!!
• Even with the simplest parallelism we need to think about
• Serialisation
• Load balance
• Memory bottlenecks
• Processor frequency
• Instruction count 
• Overheads of parallelization

• MPI + OpenMP adds complexity
• Is the problem in the OpenMP?
• Or the MPI?

• And parallel scaling tells us nothing about what is wrong!!
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The problem we’re addressing
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• There are powerful tools to us help analyse performance
• BSC toolset – Extrae, Paraver, Dimemas, etc
• Scalasca toolset – Score-P, Scalasca, Cube
• Intel’s tools – VTune, ITAC, etc
• Plus many more

• But the data they generate is often overwhelming 
• Extremely detailed and complex event timelines per thread
• Vast amounts of difficult to understand metrics

• We need to make sense of the trace data before we know what 
we’re looking for in the trace data
• But how???
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Performance analysis tools



• An easy to understand set of metrics
• Metrics which can be easily calculated from typical trace data
• Metrics which point at specific causes of performance bottlenecks

• This idea has been successfully demonstrated by POP’s MPI metrics 
• We now extend to hybrid MPI + OpenMP (& beyond?)
• We have two approaches for hybrid, both based on the POP MPI metrics

• One extends the idea of defining an individual metric per source of 
inefficiency
• The other extends the multiplicative approach of the MPI metrics
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The solution – the POP metrics



• The POP methodology defines hierarchies of metrics
• See POP online training “Understanding Application Performance with the 

POP Metrics” for details

• The top level metrics for both MPI + OpenMP schemes are identical
• And are the same as those in POP’s MPI metrics

1. Parallel Efficiency
• How efficient is the parallelisation?

2. Computation Scaling
• Is the total useful computation increasing or decreasing?

3. Global Efficiency
• Combines inefficiency from parallelisation and computation scaling
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POP’s high level metrics

https://pop-coe.eu/further-information/online-training/understanding-application-performance-with-the-pop-metrics


• We measure comp = time in useful computation on each CPU core
• i.e. the time spent executing useful user code

• And comp_ref = useful computation on a reference case
• Usually the smallest number of cores used e.g. 1 compute node

• Assuming strong computation scaling:

Parallel Efficiency = average(comp) / runtime

Computation Scaling = sum(comp_ref) / sum(comp)

Global Efficiency = Computation Scaling x Parallel Efficiency
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POP’s high level metrics



Hybrid metrics method 1
The POP ‘additive’ scheme for MPI + OpenMP
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• Lets revisit POP’s Parallel Efficiency
• This measures the efficiency of the parallelisation

• We measure comp and runtime on n cores
• comp is useful computation per CPU core

Parallel Efficiency = average(comp) / runtime

• We can think of average(comp) as an ideal runtime

Parallel Efficiency ideal runtime = average(comp) = sum(comp) / n

• It is the runtime we would get if all useful work (comp) is split evenly over 
the cores with no overheads from the parallelism
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The idea of ‘additive’ metrics



• Now look again at POP’s Global Efficiency
• This measures efficiency of the parallelisation combined with inefficiency due to 

increases in useful computation
• comp_ref  is useful computation on our reference case
• n is number of cores for other cases under consideration

Global Efficiency = [ sum(comp_ref)/n ] / runtime

• We can think of an ‘ideal runtime’ for Global Efficiency

Global Efficiency ideal runtime = sum(comp_ref)/n

• This is the runtime we would get if the work from the reference case was to 
be split evenly over n cores with no overheads
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The idea…..



• Define performance bottlenecks that can be mapped to known issues
• For each class of performance bottleneck define an ‘ideal runtime’
• Then for each class of bottleneck:

efficiency = ideal runtime / runtime
• We can also define:

inefficiency = 1 - efficiency
• For optimal performance: efficiency = 1, and inefficiency = 0

• This defines a hierarchy where we can add ‘child’ inefficiency values to get the 
‘parent’ inefficiency value
• Since inefficiency = ‘time cost of bottleneck(s)’ / runtime 
• Splitting the cost of the bottleneck into the individual  contributions is the same as 

splitting the inefficiency value
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POP’s ‘additive’ metrics



• We start with Parallel Efficiency and want to split this into child metrics
• With additive metrics we have complete freedom about how we define 

child metrics

• One obvious option is to split Parallel Efficiency into
1. Process Efficiency (ignores all thread inefficiencies)
2. Thread Efficiency (ignores process inefficiencies)

Parallel Inefficiency = Process Inefficiency + Thread Inefficiency
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Additive metrics for MPI + OpenMP



• To assess Process Efficiency we want to know
1. How evenly ‘useful work’ is distributed over the processes
2. How much time the processes spend in MPI

• If we ignore the threading there are only three states, i.e.
1. A process is in serial computation on the master thread: serial_comp
2. A process is inside an OpenMP parallel region: omp
3. A process is inside MPI and outside OpenMP

• When ignoring the threading we assume only time outside OpenMP 
and inside MPI is non-useful
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Illustration: Process Efficiency



• We define serial_comp and omp as useful
• Time in MPI and outside OpenMP is considered the bottleneck

useful = serial_comp + omp

• And we can define an ‘ideal runtime’ as average(useful)

Process Efficiency = average(useful) / runtime

• We can use the additive methodology to define ideal run times that split 
Process Efficiency into
• Load Balance Efficiency – cost of imbalance of useful over processes
• Transfer Efficiency – cost of MPI time due to data transfer over network
• Serialisation Efficiency – remaining cost of time in MPI
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Illustration: Process Efficiency



• We can define ideal runtimes which define
• Thread Efficiency – cost of remaining non-useful time
• Thread Efficiency sub metrics

• Serial Region Efficiency – cost of computation outside OpenMP
• OpenMP Parallel Efficiency – cost of time outside useful computation in OpenMP regions

• And we can also split OpenMP Parallel Efficiency e.g.
• A contribution per OpenMP bottleneck

• e.g. cost of thread load imbalance within OpenMP
• Inefficiency contributions per OpenMP parallel region
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Thread Efficiencies
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Additive metrics hierarchy
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Example (strong scaling)
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What is going on?

170

190

210

230

250

270

290

1 2 3 4
# compute nodes

Wall clock time (s)

8 threads per process

2 threads per process

1 thread per process



Number of compute nodes 1 2 4
Number of Processes 48 24 6 96 48 12 192 96 24
Threads per Process 1 2 8 1 2 8 1 2 8
Total Threads 48 48 48 96 96 96 192 192 192
Speedup 1.00 0.77 0.60 0.84 0.80 0.74 0.73 0.94 0.94
Global Efficiency 0.50 0.39 0.30 0.21 0.20 0.19 0.09 0.12 0.12
 ⤷ Parallel Efficiency 0.50 0.32 0.22 0.24 0.18 0.13 0.13 0.12 0.09
   ⤷ Process Efficiency 0.51 0.42 0.57 0.24 0.24 0.33 0.13 0.17 0.22
     ⤷ Process Load balance 0.97 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99
     ⤷ Process Communication Eff. 0.54 0.44 0.58 0.26 0.26 0.35 0.13 0.18 0.24
       ⤷ Process Transfer Efficiency 0.55 0.45 0.59 0.29 0.27 0.36 0.16 0.20 0.25
       ⤷ Process Serialisation Eff. 0.98 0.99 0.99 0.97 0.98 0.99 0.97 0.98 0.99
   ⤷ Thread Efficiency 1.00 0.90 0.65 1.00 0.93 0.80 1.00 0.95 0.86
     ⤷ OpenMP Parallel Efficiency 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
     ⤷ Serial Region Efficiency 1.00 0.90 0.65 1.00 0.94 0.80 1.00 0.95 0.86
 ⤷ Computational Scaling 1.00 1.22 1.37 0.88 1.12 1.39 0.73 0.98 1.36
   ⤷ Instruction Scaling 1.00 1.04 1.05 0.91 1.00 1.04 0.75 0.91 1.02
   ⤷ IPC Scaling 1.00 1.16 1.29 0.98 1.11 1.32 0.99 1.07 1.33
   ⤷ Frequency Scaling 1.00 1.02 1.01 0.99 1.02 1.01 0.98 1.00 1.01
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POP metrics to the rescue!
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POP metrics to the rescue!
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POP metrics to the rescue!
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What needs investigating further?



Number of compute nodes 1 2 4
Number of Processes 48 24 6 96 48 12 192 96 24
Threads per Process 1 2 8 1 2 8 1 2 8
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Single thread issues



Number of compute nodes 1 2 4
Number of Processes 48 24 6 96 48 12 192 96 24
Threads per Process 1 2 8 1 2 8 1 2 8
Total Threads 48 48 48 96 96 96 192 192 192
Speedup 1.00 0.77 0.60 0.84 0.80 0.74 0.73 0.94 0.94
Global Efficiency 0.50 0.39 0.30 0.21 0.20 0.19 0.09 0.12 0.12
 ⤷ Parallel Efficiency 0.50 0.32 0.22 0.24 0.18 0.13 0.13 0.12 0.09
   ⤷ Process Efficiency 0.51 0.42 0.57 0.24 0.24 0.33 0.13 0.17 0.22
     ⤷ Process Load balance 0.97 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99
     ⤷ Process Communication Eff. 0.54 0.44 0.58 0.26 0.26 0.35 0.13 0.18 0.24
       ⤷ Process Transfer Efficiency 0.55 0.45 0.59 0.29 0.27 0.36 0.16 0.20 0.25
       ⤷ Process Serialisation Eff. 0.98 0.99 0.99 0.97 0.98 0.99 0.97 0.98 0.99
   ⤷ Thread Efficiency 1.00 0.90 0.65 1.00 0.93 0.80 1.00 0.95 0.86
     ⤷ OpenMP Parallel Efficiency 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
     ⤷ Serial Region Efficiency 1.00 0.90 0.65 1.00 0.94 0.80 1.00 0.95 0.86
 ⤷ Computational Scaling 1.00 1.22 1.37 0.88 1.12 1.39 0.73 0.98 1.36
   ⤷ Instruction Scaling 1.00 1.04 1.05 0.91 1.00 1.04 0.75 0.91 1.02
   ⤷ IPC Scaling 1.00 1.16 1.29 0.98 1.11 1.32 0.99 1.07 1.33
   ⤷ Frequency Scaling 1.00 1.02 1.01 0.99 1.02 1.01 0.98 1.00 1.01
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Single node hybrid performance



Number of compute nodes 1 2 4
Number of Processes 48 24 6 96 48 12 192 96 24
Threads per Process 1 2 8 1 2 8 1 2 8
Total Threads 48 48 48 96 96 96 192 192 192
Speedup 1.00 0.77 0.60 0.84 0.80 0.74 0.73 0.94 0.94
Global Efficiency 0.50 0.39 0.30 0.21 0.20 0.19 0.09 0.12 0.12
 ⤷ Parallel Efficiency 0.50 0.32 0.22 0.24 0.18 0.13 0.13 0.12 0.09
   ⤷ Process Efficiency 0.51 0.42 0.57 0.24 0.24 0.33 0.13 0.17 0.22
     ⤷ Process Load balance 0.97 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99
     ⤷ Process Communication Eff. 0.54 0.44 0.58 0.26 0.26 0.35 0.13 0.18 0.24
       ⤷ Process Transfer Efficiency 0.55 0.45 0.59 0.29 0.27 0.36 0.16 0.20 0.25
       ⤷ Process Serialisation Eff. 0.98 0.99 0.99 0.97 0.98 0.99 0.97 0.98 0.99
   ⤷ Thread Efficiency 1.00 0.90 0.65 1.00 0.93 0.80 1.00 0.95 0.86
     ⤷ OpenMP Parallel Efficiency 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
     ⤷ Serial Region Efficiency 1.00 0.90 0.65 1.00 0.94 0.80 1.00 0.95 0.86
 ⤷ Computational Scaling 1.00 1.22 1.37 0.88 1.12 1.39 0.73 0.98 1.36
   ⤷ Instruction Scaling 1.00 1.04 1.05 0.91 1.00 1.04 0.75 0.91 1.02
   ⤷ IPC Scaling 1.00 1.16 1.29 0.98 1.11 1.32 0.99 1.07 1.33
   ⤷ Frequency Scaling 1.00 1.02 1.01 0.99 1.02 1.01 0.98 1.00 1.01
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Single versus multiple node hybrid



Hybrid metrics method 2
The POP ‘multiplicative’ scheme for MPI + OpenMP
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Applying the original model to hybrid codes

• Efficiency computed as percentage of time outside the two parallel runtimes
• Useful as a first step to distinguish between Load Balance and Communication. But how to 

dig down?
• Efficiencies are mixing inefficiencies from MPI and OpenMP à Need to distribute the blame between 

the two programming models

Hybrid
Parallel Efficiency

Hybrid Communication
Efficiency

Hybrid Load
Balance Efficiency
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max(comp) / runtime average(comp) / max(comp)

average(comp) / runtime



What do we want?

• Global load balance and communication concepts can be mapped to any parallel 
programming paradigm

• The efficiencies at hybrid level collapse the contributions from the two programming 
models
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Isolating MPI
• First target: hierarchical codes where MPI is the upper level (approach for 90% of the 

hybrid codes). From the MPI point of view, OpenMP runtime is as useful as computation:

Hybrid efficiencies [%]
Parallel efficiency 47.07
Load Balance 52.09
Communication 90.37

MPI efficiencies [%]
Parallel efficiency 95.97
Load Balance 98.87
Communication 97.06

MPI calls

Duration of the computing regions
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MPI Parallel Efficiency = average(out_MPI) / runtime



OpenMP efficiencies
• Whatever cannot be blamed on MPI is caused by OpenMP. For example:

OpenMP efficiencies [%]
Parallel efficiency 49.05
Load Balance 52.69
Communication 93.11

à The model is properly reporting that the main problem is imbalance in the OpenMP 
parallelization – large computation on the left only executed by the master thread.

OpenMP parallel functions

Duration of the computing regions
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OpenMP Parallel Eff. = Hybrid Parallel Eff. / MPI Parallel Eff.



Validating the source of imbalance

Phase 1 à OpenMP imbalance (previous slide), phase 2 à MPI imbalance?

Hybrid efficiencies [%]
Parallel efficiency 43.68
Load Balance 48.46
Communication 90.14

MPI efficiencies [%]
Parallel efficiency 69.12
Load Balance 70.01
Communication 98.6

OpenMP efficiencies [%]
Parallel efficiency 63.19
Load Balance 69.22
Communication 91.42

• Synthetic code with two very different phases

OpenMP parallel functions

Duration of the computing regions

MPI calls
phase 1 phase 2
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Validating the source of imbalance
• Zooming in the second phase we can validate our guess

à Phase 2 only reports MPI imbalance as expected

Hybrid efficiencies [%]
Parallel efficiency 55.95
Load Balance 58.78
Communication 95.19

MPI efficiencies [%]
Parallel efficiency 59.83
Load Balance 61.20
Communication 97.74

OpenMP efficiencies [%]
Parallel efficiency 93.51
Load Balance 96.05
Communication 97.39

Duration of the computing regions

MPI calls

OpenMP parallel functions
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Same approach applied to MPI+CUDA
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• Bigger impact from CUDA component with a similar contribution in all the scales
• MPI contribution increases with the scale, but still lower than CUDA



• We recommend the following Python tools to automatically calculate metrics 
from Extrae data
• NAG-PyPOP for additive metrics (pip install [--user] NAG-PyPOP)

(https://pypi.org/project/NAG-PyPOP)
• BSC’s Basic Analysis module for multiplicative metrics 

(https://tools.bsc.es/downloads)

• Scalasca + Cube have some POP metrics support (Score-P traces)
• Other tracing tools can be used as metrics can be calculated manually (see 

handouts for details)

• POP can do it for you!
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How to calculate the metrics?

https://pypi.org/project/NAG-PyPOP
https://tools.bsc.es/downloads


Conclusions
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• We presented two generic models to characterize the efficiency of hybrid codes by 
splitting the contribution of each programming model.
• Each model has its own strengths:
• The additive approach is based on concepts specific to each programming model, 

making them easier to map to known problems.
• Not focusing on the specifics of each parallel programming paradigm, the 

multiplicative approach allows us to use the same model with MPI+OpenMP, 
MPI+CUDA,…

• The two models are being used in the framework of the POP2 Center of Excellence 
(https://pop-coe.eu)

https://pop-coe.eu/
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Contact:
https://www.pop-coe.eu
pop@bsc.es
@POP_HPC
youtube.com/POPHPC
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