
EPW performance plan report

Document Information
Reference Number POP PP 06 (EPW)
Author Brian Wylie (JSC)
Contributor(s) Ilya Zhukov (JSC)
Date May 12, 2017

Notices: The research leading to these results has received funding from the European Union's Horizon 2020
research and innovation programme under grant agreement No 676553.

©2017 POP Consortium Partners. All rights reserved.



POP Ref.No. POP PP 06 (EPW) CONTENTS

Contents

1 Background 3

2 Initial analysis (v0) 3

3 Analysis of improved load balance (v1) 7

4 Summary 10

2



POP Ref.No. POP PP 06 (EPW)

1 Background
Applicants Name: Samuel Poncé
Institution: University of Oxford, UK
Application Name: EPW, version 4.0.0
Programming Language: Fortran90
Programming Model: MPI
Source Code Available: yes (GPL)
Input data: GaN/epw-CB-4q (polar wurtzite gallium nitride crystal with 64 k-points) uniform
fine grid
Performance study: performance plan following initial audit POP AR 28
User description: Currently the EPW code relies on MPI parallelization and scales correctly
up to 200 cores. We would like to improve scalability to 1000 cores and also optimize the code
for improved performance. We would be happy to be have an audit to identify the bottlenecks
in the code and focus on those.
Application Description: EPW (www.epw.org) is an Electron-Phonon Wannier code which
calculates properties related to the electron-phonon interaction using Density Functional Per-
turbation Theory and Maximally Localized Wannier Functions. It is distributed as part of the
Quantum ESPRESSO suite.
Testcase Description: 216 MPI processes on 9 compute nodes.
Machine Description: ARCHER Cray XC30 at EPCC, comprising 4920 compute nodes, with
dual 12-core Intel Xeon E5-2697v2 (Ivy Bridge) 2.7 GHz processors sharing 64GB or memory
and joined by two QPI links, connected via proprietary Cray Aries interconnect (Dragonfly
topology). PrgEnv-intel using Intel 15.0.2.164 compilers.
Analysis tools: Score-P/2.0.2, Scalasca/2.3.1. Score-P default (compiler+MPI) instrumenta-
tion, combined with runtime measurement filter specifically for FFTXlib fftw routines.

2 Initial analysis (v0)
Two measurements were provided for initial analysis from executions with 216 MPI ranks (on
9 compute nodes): a version exploiting memory-saving ‘etfmem’ (which does more file I/O) as
well as a default configuration. In contrast to the previously audited executions, a finer uniform
grid (rather than a coarse random grid) was used, and simulation exploited restart files to focus
on the ephwann phase which interpolates from real-space Wannier to a dense Bloch grid.

• There seems no significant difference in performance between the memory-saving ‘etfmem’
(39623 seconds) and ‘default’ execution (38923 seconds) configurations (Figure 1). The
difference of less than 2% (also compared to uninstrumented reference executions) is most
likely due to file I/O variations (from run to run, and for the two configurations).

• Using restarts, 100% of execution time is for ephwann shuffle, of which around 17% is
barrier synchronization (mostly in selfen elec q, but also at finalization), 1% for the
MPI Allreduce in ephwan2blochp, and of the remaining Computation time the bulk is in
rgd blk epw with a lesser amount in selfen elec q.

• The dramatic load imbalance evident in the initial measurements with 48 MPI processes
and a course random grid (where four processes had no work in rgd blk epw) is no longer
present, however, now that there are 216 MPI processes load imbalance remains a sig-
nificant issue that can be expected to grow with increasing numbers of processes. Load

3



POP Ref.No. POP PP 06 (EPW)

imbalance efficiency for rgd blk epw is 89%. Time distributions per process are shown
in Figure 2, where imbalance in rgd blk epw and selfen elec q computation results in
significant time in MPI Barrier.

• The computation imbalance of selfen elec q (called 8000 times by each MPI rank) is
correlated to the compute node (each with 24 consecutive MPI ranks). On some com-
pute nodes, all ranks take 2400 seconds, while on other compute nodes, all ranks take
approx. 600 seconds.

• Most of the time in selfen elec q is likely writing of the linewidth.elself file (as
well as stdout) during the final iteration (based on the previous 48-rank execution trace).
Imbalance is accumulated by a subsequent MPI Barrier (green in Figure 2). Although
selfen elec q is executed every iteration, its contribution is expected to be minor.

• The computation imbalance of rgd blk epw execution time by each rank correlates to the
number of calls/visits (Figure 3).

• Six ranks 0,1,2,3,4,7 have 3% more visits than any other ranks, explained by the blockwise
distribution of 8000 k-points over 216 ranks resulting in 38 k-points for the first 8 ranks
and 37 k-points for the remainder. Despite this small overload, these first 8 ranks aren’t
the slowest and therefore don’t appear to impede the others.

• Approximately 600 (7%) of the 8000 k-points apparently don’t result in any significant
computational work in rgd blk epw, and appear to be clustered such that some processes
have much less (only one-third as much) work as their peers.

• Barrier synchronisation time in selfen elec q is anti-correlated to the (imbalanced) Com-
putation time in rgd blk epw. The rank with the longest computation time (number 129)
still has 2400 seconds of time in the selfen elec q MPI Barrier synchronization preced-
ing the MPI Allreduce, which indicates that the load imbalance is not fixed but varying
throughout the 8000 iterations.

Figure 1: EPW GaN ‘default’ epw-CB-4q and memory-saving epw-CB-4q-etfmem calltrees
showing percentage of total execution time (with 0.5% threshold for hiding).

4



POP Ref.No. POP PP 06 (EPW)

Figure 2: EPW GaN epw-CB-4q-etfmem execution (216 MPI processes on Archer): Stacked
chart of exclusive execution time per process on left, unstacked on right. Major components are
73% rgd blk epw computation (red), 16% selfen elec q MPI Barrier synchronization (pur-
ple), 4% selfen elec q computation (blue), and 2% concluding MPI Barrier synchronization
(green).

5



POP Ref.No. POP PP 06 (EPW)

Figure 3: EPW GaN epw-CB-4q-etfmem execution (216 MPI processes on Archer): Histogram
of rgd blk epw exclusive execution time per process on left (black) and corresponding visits/in-
stances on right (red), showing correlation. (Ranks increase from top to bottom.)

6



POP Ref.No. POP PP 06 (EPW)

3 Analysis of improved load balance (v1)
The previous rgb_blk_epw developed for the case of polar materials was replaced by a revised
version, rgb_blk_epw_fine. Redundant computation in a nested loop for sum over band was
eliminated from the specialised version of the routine where it was unnecessary. Also physical
reasons allowed a sum over G-vectors to be restricted to a significantly reduced range with no
loss of accuracy. Repeating the previous configuration using 216 MPI ranks had execution time
reduced 60% from 38923 to 15846 seconds.

Figure 4 shows that the load balance is also significantly improved, with only the first 8
ranks having one extra of the 8000 k-points. While these ranks require a little longer, execution
time imbalance is now only 4% compared to 9% previously, and also more than three times
faster.

Figure 5 reveals that the 57% of execution time for rgb_blk_epw_fine is complemented by
a considerably smaller 2.3% for the following MPI_Barrier synchronization in selfen_elec_q,
However, the concluding MPI_Barrier synchronization after the final instance of selfen_elec_q
is now 7% of total time, complementing imbalance in selfen_elec_q itself.

Table 1: Parallel efficiency comparison of initial 216-rank configuration in original (216.v0) and
revised (216.v1) versions, together with revised version with 480 MPI ranks (480.v1).

Routine 216.v0 216.v1 480.v1
ephwann shuffle 82.36 87.89 71.04
– rgb blk epw 91.25 96.29 95.34
– selfen elec q 45.70 76.24 56.94

The comparison of parallel efficiencies of the original and revised versions with 216 MPI
ranks in Table 1 confirms that for rgb_blk_epw_fine efficiency improved from 91% to 96%,
with ephwann_shuffle overall improving from 82% to 88% efficiency.

A larger measurement using 27000 k-points with 480 MPI ranks (on 20 compute nodes)
showed that although rgb_blk_epw_fine load imbalance had grown to 5%, this was still
fairly good (with some ranks still having 2% more k-points). The proportion of time for
rgb_blk_epw_fine had diminished to 32%, however, while selfen_elec_q and concluding
synchronization had grown to almost 60% of total time. Although the parallel efficiency of
rgb_blk_epw_fine remained 95%, that of selfen_elec_q dropped from 76% to 57% and over-
all ephwann_shuffle down to 71% (Table 1).

It was also observed that the proportional of system CPU time was also large (and variable),
hinting that file I/O could be responsible. Although not distinguished in the measurements, the
final instance of selfen_elec_q includes writing of the final simulation output to file (50MB
‘linewidth.elself’) and stdout (100MB). The amount of formatted data written is not particularly
large, but suggested that the parallel writing was inefficient.

7



POP Ref.No. POP PP 06 (EPW)

Figure 4: Revision 1 of EPW improving load balance of rgd blk epw fine for GaN epw-CB-4q-
eftmem execution (216 MPI processes on Archer): Histogram of rgd blk epw fine exclusive
execution time per process on left (black) and corresponding visits/instances on right (red),
showing correlation. (Ranks increase from top to bottom.)

8



POP Ref.No. POP PP 06 (EPW)

Figure 5: Revision 1 of EPW GaN epw-CB-4q-etfmem execution (216 MPI processes on Archer):
Stacked chart of exclusive execution time per process on left, unstacked on right. Major com-
ponents are now 57% rgd blk epw fine computation (red), 17% selfen elec q computation
(purple), and 7% concluding MPI Barrier synchronization (blue). MPI Barrier synchronization
in selfen elec q is now 2.3% (cyan).

9



POP Ref.No. POP PP 06 (EPW)

4 Summary
This POP Performance Plan of EPW focussed on the load imbalance within ephwann_shuffle
identified in the prior POP Performance Audit POP AR 28. Although a finer uniform grid
(rather than the previous coarse random grid) was used, with the increased number of MPI
ranks — from 48 (on two compute nodes) to 216 (on nine compute nodes) on the Archer
Cray XC30 — significant load imbalance of 9% was still observed, manifesting primarily in
rgd_blk_epw.

A revised version of this routine, rgb_blk_epw_fine, specialised to eliminate unnecessary
calculation and with optimised vector summations, was 60% faster than the original and had
much less imbalance (4%).

EPW could now be used for a larger execution with 480 MPI ranks (on 20 compute
nodes) with only modest degradation of load imbalance in rgb_blk_epw_fine to 5%. Un-
fortunately overall performance was somewhat disappointing, as the proportion of time for
rgb_blk_epw_fine had now diminished to less than one-third of the execution, with the
selfen_elec_q routine having grown to almost 60%.

EPW ephwann execution has 8000 instances of selfen_elec_q, however, the final instance
is characterised by very different performance, taking much longer and varying substantially ac-
cording to the compute node on which a process executed. The final execution of selfen_elec_q
concludes with writing the simulation output to file, and although the amount of data is not
large (around 50MB) it becomes a bottleneck inhibiting scaling and larger simulations.

This file writing issue should be investigated in a POP Proof-of-Concept service.

10


	Background
	Initial analysis (v0)
	Analysis of improved load balance (v1)
	Summary

