
EPW Proof-of-Concept report

Document Information
Reference Number POP PoCR 7 (EPW)
Author Brian Wylie (JSC)
Contributor(s) Ilya Zhukov (JSC)
Date May 12, 2017

Notices: The research leading to these results has received funding from the European Union's Horizon 2020
research and innovation programme under grant agreement No 676553.

©2017 POP Consortium Partners. All rights reserved.

POP Ref.No. POP PoCR 7 (EPW) CONTENTS

Contents

1 Background 3

2 Previous assessment and recommendation 3

3 Implementation 5

4 Analysis after revised file writing (v2) 5
4.1 1920-process configuration analysis . 7

5 Conclusions 8

2

POP Ref.No. POP PoCR 7 (EPW)

1 Background
Applicants Name: Samuel Poncé
Institution: University of Oxford, UK
Application Name: EPW, version 4.0.0
Programming Language: Fortran90
Programming Model: MPI
Source Code Available: yes (GPL)
Input data: GaN/epw-CB-4q (polar wurtzite gallium nitride crystal) uniform fine grid
Application Description: EPW (www.epw.org) is an Electron-Phonon Wannier code which
calculates properties related to the electron-phonon interaction using Density Functional Per-
turbation Theory and Maximally Localized Wannier Functions. It is distributed as part of the
Quantum ESPRESSO suite.
Machine Description: ARCHER Cray XC30 at EPCC, comprising 4920 compute nodes, with
dual 12-core Intel Xeon E5-2697v2 (Ivy Bridge) 2.7 GHz processors sharing 64GB or memory
and joined by two QPI links, connected via proprietary Cray Aries interconnect (Dragonfly
topology). PrgEnv-intel using Intel 15.0.2.164 compilers.
Analysis tools: Score-P/2.0.2, Scalasca/2.3.1. Score-P default (compiler+MPI) instrumenta-
tion, combined with runtime measurement filter specifically for FFTXlib fftw routines.

2 Previous assessment and recommendation
The overall performance of EPW with a GaN/epw-CB-4q test case on the Archer Cray XC30
was reported in POP Performance Audit POP AR 28. Various load imbalance issues were iden-
tified in this original version (v0), and the one considered to be most important in the ephwann
phase was the subject of a following POP Performance Plan POP PP 06. Specialisation of
the rgd_blk_epw routine to eliminate redundant calculation and optimise the summation of G-
vectors (version v1) demonstrated significantly improved overall performance and load balance,
allowing larger computational simulations to use more processors. Unfortunately, total execu-
tion time was disappointing for larger EPW computations, with the selfen_elec_q routine
having grown to dominate.

This POP Proof-of-Concept study focuses on investigating the nature and origin of the
degradation of selfen_elec_q performance, incorporating a remedy to improve it, and ulti-
mately to validate scalability to the target configuration size of 1000 processes/cores.

The last instance of selfen_elec_q differs from the other instances in that it also writes
the final state to a file on disk (50MB of formatted text to ‘linewidth.elself’) and 100MB to
stdout. Although this is not distinguished in function profiles, it was clearly evident in time-
line visualisation of execution traces, such as Figure 1.1 While all MPI processes execute each
selfen_elec_q instance concurrently, there is a prominent pattern of those processes running
on each compute node taking similar amounts of time, and dramatically different times for each
compute node (which also varied from run to run). Even in function profiles covering all 8000
instances of selfen_elec_q, such as Figure 2,2 this distinctive pattern by compute node is
evident. Highly variable total run times and high proportion of system time also pointed to the
likely significance of file I/O.

1Vampir display quick reference:
https://pop-coe.eu/sites/default/files/pop_files/vampir_display_quickref.pdf

2Cube display quick reference:
https://pop-coe.eu/sites/default/files/pop_files/cube_display_quickref.pdf

3

https://pop-coe.eu/sites/default/files/pop_files/vampir_display_quickref.pdf
https://pop-coe.eu/sites/default/files/pop_files/cube_display_quickref.pdf

POP Ref.No. POP PoCR 7 (EPW)

Figure 1: Execution timeline of EPW GaN testcase execution (v0) on two Archer XC30 compute
nodes each with 24 MPI ranks (48 MPI processes). selfen elec q (shown in yellow) executed
thousands of times throughout ephwann shuffle phase (pale green), with final instance requir-
ing much longer and unbalanced for processes on each compute node.

Figure 2: Profile of EPW GaN testcase execution (v1) on nine Archer XC30 compute nodes
each with 24 MPI ranks (216 MPI processes). Computation time exclusively in selfen elec q
shows significant variation by process rank with correlation to compute node.

4

POP Ref.No. POP PoCR 7 (EPW)

3 Implementation
File writing in selfen_elec_q was done concurrently by all MPI ranks, resulting in redundant
writing and massive contention for the file on disk: negative performance aspects which grow at
least linearly (and potentially worse) with the number of MPI ranks. MPI provides specific rou-
tines for (potentially optimised) parallel writing to shared files, and various additional libraries
also address parallel file I/O, e.g., parallel HDF5, parallel netCDF and SIONlib. However, since
the amount of data being written in this case is relatively small (50MB), the simplest approach
for initial investigation would be for only one MPI process (master rank 0) to write the entire
data to file. This was straightforward to incorporate with only minor code changes (version v2).

4 Analysis after revised file writing (v2)
With selfen_elec_q modified so that the final instance wrote its output data only from rank
0, writing time on 480 MPI ranks reduced from over 7 hours to only 56 seconds: a 450-fold
improvement! Subsequent measurements with up to 1920 MPI ranks (80 compute nodes), which
were previously unthinkable, also had writing times of less than 60 seconds. Although writing
time remains variable from run to run, it is now a negligible component of EPW execution.

Figure 3 shows the scalability of this version of EPW with different numbers of compute
nodes of Archer Cray XC30. Execution time is again dominated by rgb_blk_epw_fine, which

240 480 960 1920
Processes

100

1000

10000

T
im

e
 [

s
]

TOTAL

rgd_blk_epw_fine

selfen_elec_q

ephwan2blochp

ephwan2bloch

dmewan2bloch

hamwan2bloch

EPW ephwann (revised v2)
GaN/epw-CB-4q 8000u on Archer Cray XC30 (24p/node)

Figure 3: EPW ephwann version 2 (GaN epw-CB-4q testcase with 27000 k-points) scalability
on Archer Cray XC30. (Previous v1 times with 480 processes for comparison as large dots.)

5

POP Ref.No. POP PoCR 7 (EPW)

Table 1: Parallel efficiency comparison of EPW ephwann version 2 with improved file writing
for different numbers of MPI processes. (Values as percentages)

Routine 240 480 960 1920
ephwann shuffle 92.83 92.16 85.58 71.72
– rgb blk epw fine 93.88 94.96 93.02 86.30
– selfen elec q 88.18 90.53 89.89 89.25
– ephwan2blochp 41.12 31.19 23.47 17.95

scales well up to 1920 ranks (80 compute nodes) and is likely to scale further. selfen_elec_q
(including the revised file writing) and three of the other significant EPW routines also scale
well, with the exception being ephwan2blochp which requires progressively more time growing
to over 22% of the total execution time with 1920 ranks.

For the 8-fold scaling from 240 to 1920 MPI ranks, Table 1 shows moderate reductions of
parallel efficiency3 for rgb_blk_epw_fine from 94% to 86% and stable efficiency around 89% for
selfen_elec_q (excluding the final iteration doing file writing), with overall ephwann_shuffle
parallel efficiency dropping from 93% to a still quite reasonable 72%. The latter is largely
explained by the parallel efficiency of ephwan2blochp more than halving from 41% to 18%:
both load balance efficiency of 45% and communication efficiency of 40% are major factors for
the latter.

3POP standard metrics for parallel performance analysis: https://pop-coe.eu/node/69

6

https://pop-coe.eu/node/69

POP Ref.No. POP PoCR 7 (EPW)

4.1 1920-process configuration analysis
Focussing on the configuration using 1920 MPI ranks provides insight into the remaining scaling
issues. The profile in Figure 4 shows that 28% of total execution time is spent in MPI, with 18.6%
for mp_sum_c4d within ephwan2blochp and 8.6% for mp_sum_r1 within selfen_elec_q. Almost
all of the latter is collective synchronization time (and negligible for the 8000 MPI_Allreduce
calls, one per iteration), whereas in ephwan2blochp some 5.1% is collective synchronization
time versus 13.5% for the 18 MPI_Allreduce calls per iteration. The latter require 800 seconds
for the reduction, with MPI ranks above 95 having more than 300 seconds of additional waiting
to initiate the MPI_Allreduce, largely due to the 95 lowest ranks requiring correspondingly
longer for computation in ephwan2blochp.

Figure 4: EPW GaN epw-CB-4q execution (1920 MPI processes on Archer): profile of execution
time showing computation time in ephwan2blochp ranging from around 200 to over 500 seconds,
resulting in associated waiting time of 300 seconds on ranks above 95 at following collective
synchronization prior to MPI Allreduce.

7

POP Ref.No. POP PoCR 7 (EPW)

5 Conclusions
This POP Proof-of-Concept implementation addressed the file writing bottleneck that severely
limited EPW performance and scalability when working with large numbers of MPI processes
(compute nodes) on the Archer Cray XC30. Previous writing times of many hours have been
reduced to under one minute. Whereas use of more than a few compute nodes was previ-
ously impractically inefficient, scaling to 1920 MPI processes (80 compute nodes) has now been
demonstrated with good parallel efficiency. This also relies on polar material calculation op-
timisation and associated load balance improvements assessed in the prior POP Performance
Plan (POP PP 06). Both modifications particularly benefit large scale executions of EPW, yet
they apply to all computer systems (not just Archer Cray XC30) and also at smaller scale.

While much of EPW ephwann seems in good shape to scale to even larger configurations,
the originally negligible ephwan2blochp routine requires a growing time for collective commu-
nication (MPI_Allreduce) which will soon dominate. There is also a significant computational
imbalance in this routine for a subset of the ranks: further scaling of EPW would need to
address this issue.

8

	Background
	Previous assessment and recommendation
	Implementation
	Analysis after revised file writing (v2)
	1920-process configuration analysis

	Conclusions

