
Parallel Performance Optimization and Productivity

POP CoE

- A Centre of Excellence
 - On Performance Optimisation and Productivity
 - Promoting best practices in parallel programming

- Providing FREE Services
 - Precise understanding of application and system behaviour
 - Suggestion/support on how to refactor code in the most productive way
- Horizontal
 - Transversal across application areas, platforms, scales
- For (EU) academic AND industrial codes and users!

Partners

Who?

- BSC, ES (coordinator)
- HLRS, DE
- IT4I, CZ
- JSC, DE
- NAG, UK
- RWTH Aachen, IT Center, DE
- TERATEC, FR
- UVSQ, FR

| IT4INNOVATIONS | NATIONAL SUPERCOMPUTING | CENTER

A team with

- Excellence in performance tools and tuning
- Excellence in programming models and practices
- Research and development background AND proven commitment in application to real academic and industrial use cases

Motivation

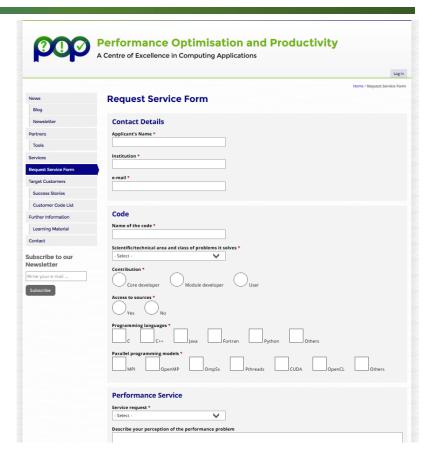
Why?

- Complexity of machines and codes
 - ⇒ Frequent lack of quantified understanding of actual behaviour
 - ⇒ Not clear most productive direction of code refactoring
- Important to maximize efficiency (performance, power) of compute intensive applications and productivity of the development efforts

What?

- Parallel programs, mainly MPI/OpenMP
 - Although also CUDA, OpenCL, OpenACC, Python, ...

The Process ...



When?

December 2018 – November 2021

How?

- Apply
 - Fill in small questionnaire describing application and needs https://pop-coe.eu/request-service-form
 - Questions? Ask pop@bsc.es
- Selection/assignment process
- Install tools @ your production machine (local, PRACE, ...)
- Interactively: Gather data → Analysis → Report

FREE Services provided by the CoE

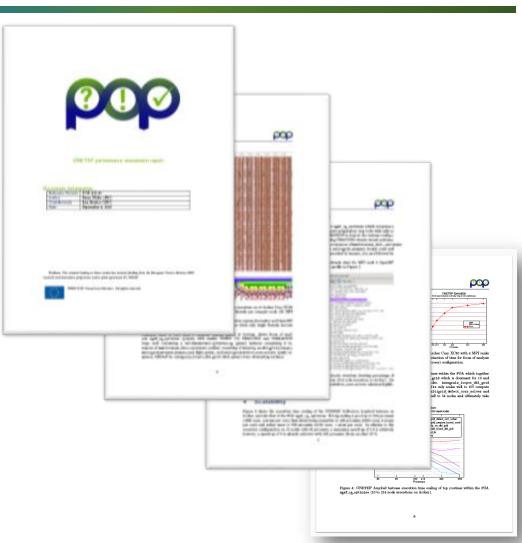
Parallel Application Performance Assessment

- Primary service
- Identifies performance issues of customer code (at customer site)
- If needed, identifies the root causes of the issues found and qualifies and quantifies approaches to address them (recommendations)
- Combines former Performance Audit (?) and Plan (!)
- Medium effort (1-3 months)

Proof-of-Concept (✓)

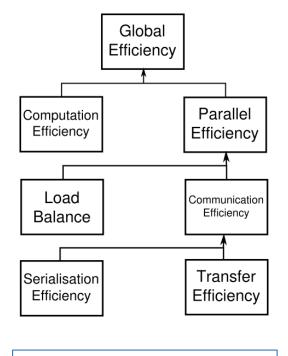
- Follow-up service
- Experiments and mock-up tests for customer codes
- Kernel extraction, parallelisation, mini-apps experiments to show effect of proposed optimisations
- Larger effort (3-6 months)


```
<!DOCTYPE html>
<html id="home-layout">
  <head>
    <meta http-equiv="content-type" conte
    <title>Source Code Pro</title>
    <!-- made with <3 and AFDKO -->
    <meta name="keywords" content="sans,
        monospace, open source, coding, for
    <link rel="stylesheet" type="text/css"
</head>
<body>
    <div id="main">
```


Note: Effort shared between our experts and customer!

Outline of a Typical Audit Report

- Application Structure
- (If appropriate) Region of Interest
- Scalability Information
- Application Efficiency
 - E.g. time spent outside MPI
- Load Balance
 - Whether due to internal or external factors
- Serial Performance
 - Identification of poor code quality
- Communications
 - E.g. sensitivity to network performance
- Summary and Recommendations



Efficiencies

- The following metrics are used in a POP Performance Audit:
- Global Efficiency (GE): GE = PE * CompE
 - Parallel Efficiency (PE): PE = LB * CommE
 - Load Balance Efficiency (LB): LB = avg(CT)/max(CT)
 - Communication Efficiency (CommE): CommE = SerE * TE
 - Serialization Efficiency (SerE):
 SerE = max (CT / TT on ideal network)
 - Transfer Efficiency (TE): TE = TT on ideal network / TT
 - (Serial) Computation Efficiency (CompE)
 - Computed out of IPC Scaling and Instruction Scaling
 - For strong scaling: ideal scaling -> efficiency of 1.0

CT = Computational time TT = Total time

Details see https://sharepoint.ecampus.rwth-aachen.de/units/rz/HPC/public/Shared%20Documents/Metrics.pdf

Efficiencies

	2	4	8	16
Parallel Efficiency	0.98	0.94	0.90	0.85
Load Balance	0.99	0.97	0.91	0.92
Serialization efficiency	0.99	0.98	0.99	0.94
Transfer Efficiency	0.99	0.99	0.99	0.98
Computation Efficiency	1.00	0.96	0.87	0.70
Global efficiency	0.98	0.90	0.78	0.59

	2	4	8	16
IPC Scaling Efficiency	1.00	0.99	0.96	0.84
Instruction Scaling Efficiency	1.00	0.97	0.94	0.91
Core frequency efficiency	1.00	0.99	0.96	0.91

Tools

Install and use already available monitoring and analysis technology

- Analysis and predictive capabilities
- Delivering insight
 - With extreme detail
 - Up to extreme scale

Open-source toolsets

- Extrae + Paraver
- Score-P + Cube + Scalasca/TAU/Vampir
- Dimemas, Extra-P
- MAQAO

Commercial toolsets

(if available at customer site)

- Intel tools
- Cray tools
- ARM tools

Target customers

Code developers

- Assessment of detailed actual behaviour
- Suggestion of most productive directions to refactor code

Users

- Assessment of achieved performance in specific production conditions
- Possible improvements modifying environment setup
- Evidence to interact with code provider

• Infrastructure operators

- Assessment of achieved performance in production conditions
- Possible improvements from modifying environment setup
- Information for time computer time allocation processes
- Training of support staff

Vendors

- Benchmarking
- Customer support
- System dimensioning/design

Overview of Codes Investigated

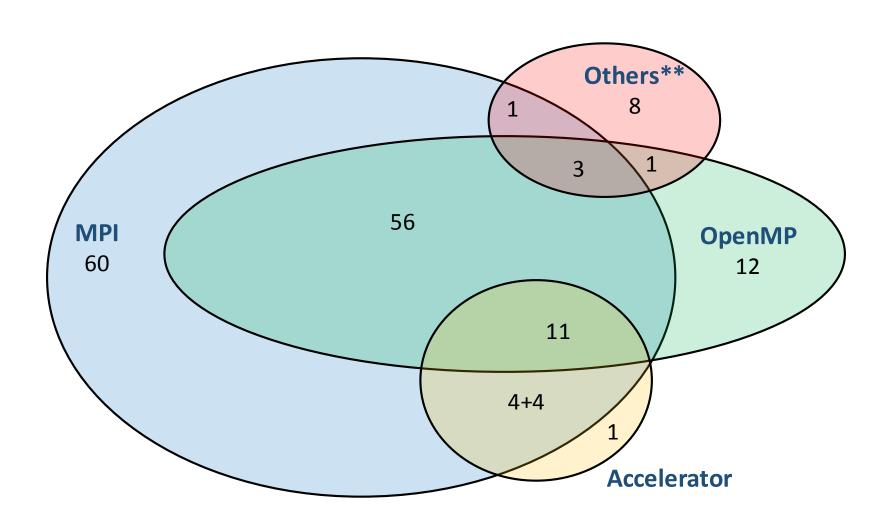
Status after 2½ Years (End of Phase1)

Performance Audits and Plans

- 139 completed or reporting to customer
 - 13 more in progress

Proof-of-Concept

- 19 completed Proofs of Concept
 - 3 more in progress


Example POP Users and Their Codes

Area	Codes
Computational Fluid Dynamics	DROPS (RWTH Aachen), Nek5000 (PDC KTH), SOWFA (CENER), ParFlow (FZ-Juelich), FDS (COAC) & others
Electronic Structure Calculations	ADF, BAND, DFTB (SCM), Quantum Expresso (Cineca), FHI-AIMS (University of Barcelona), SIESTA (BSC), ONETEP (University of Warwick)
Earth Sciences	NEMO (BULL), UKCA (University of Cambridge), SHEMAT-Suite (RWTH Aachen), GITM (Cefas) & others
Finite Element Analysis	Ateles, Musubi (University of Siegen) & others
Gyrokinetic Plasma Turbulence	GYSELA (CEA), GS2 (STFC)
Materials Modelling	VAMPIRE (University of York), GraGLeS2D (RWTH Aachen), DPM (University of Luxembourg), QUIP (University of Warwick), FIDIMAG (University of Southampton), GBmoIDD (University of Durham), k-Wave (Brno University), EPW (University of Oxford) & others
Neural Networks	OpenNN (Artelnics)

Programming Models Used

** MAGMA Celery

TBB

IDD

GASPI

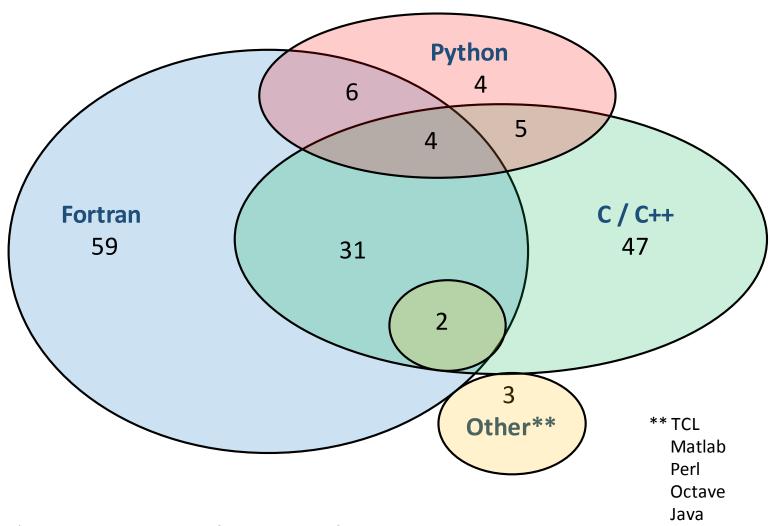
C++ threads

MATLAB PT

StarPU

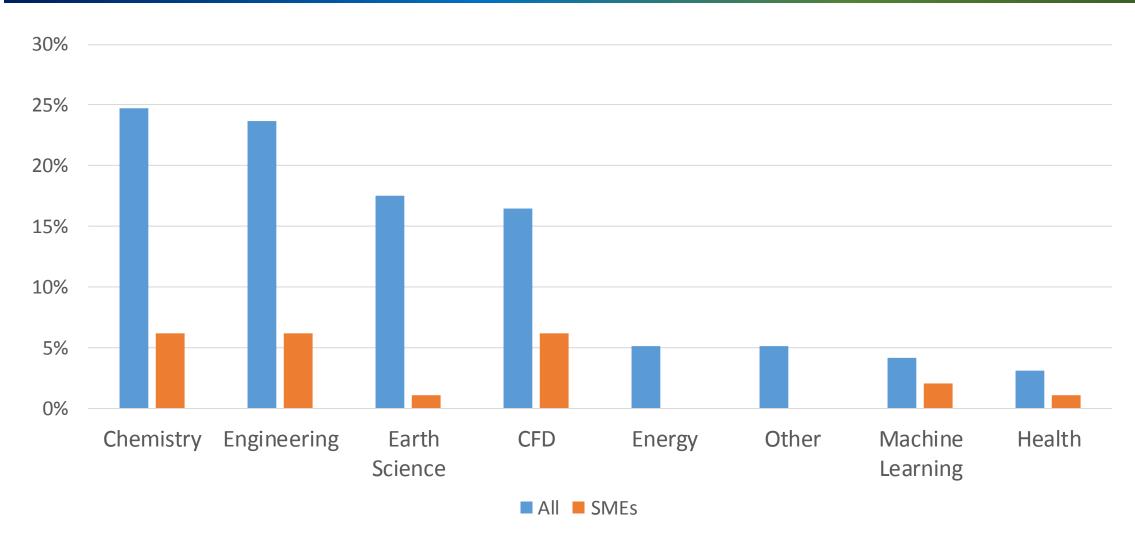
GlobalArrays

Charm++


Fortran Coarray

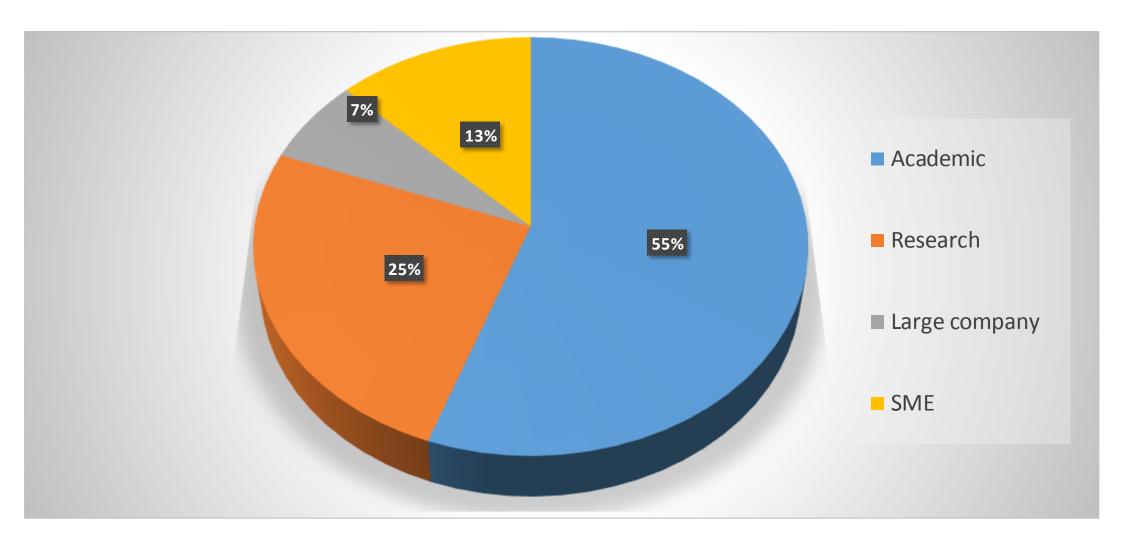
^{*} Based on data collected for 161 POP Performance Audits

Programming Languages Used

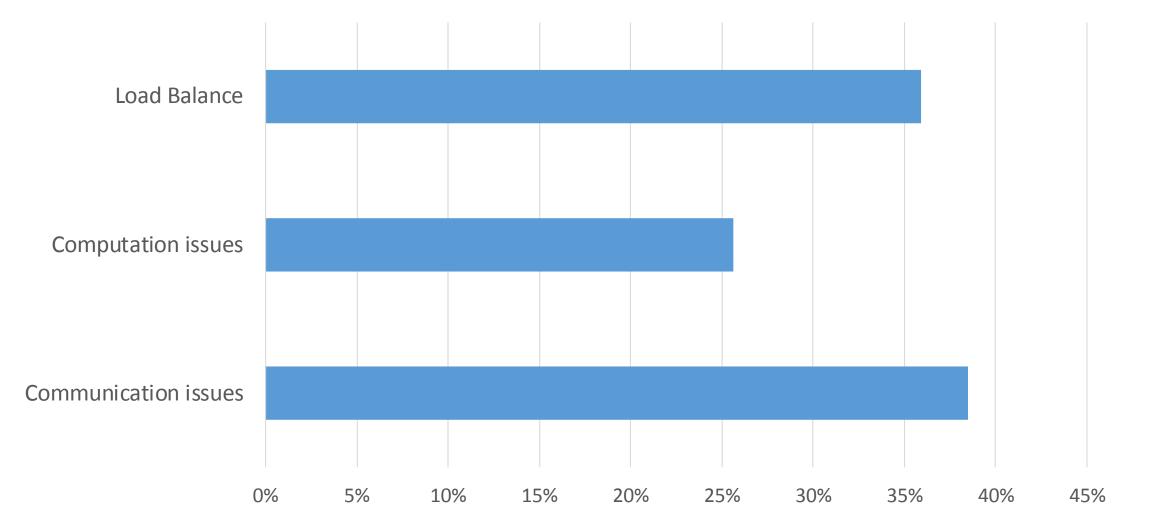


^{*} Based on data collected for 161 POP Performance Audits

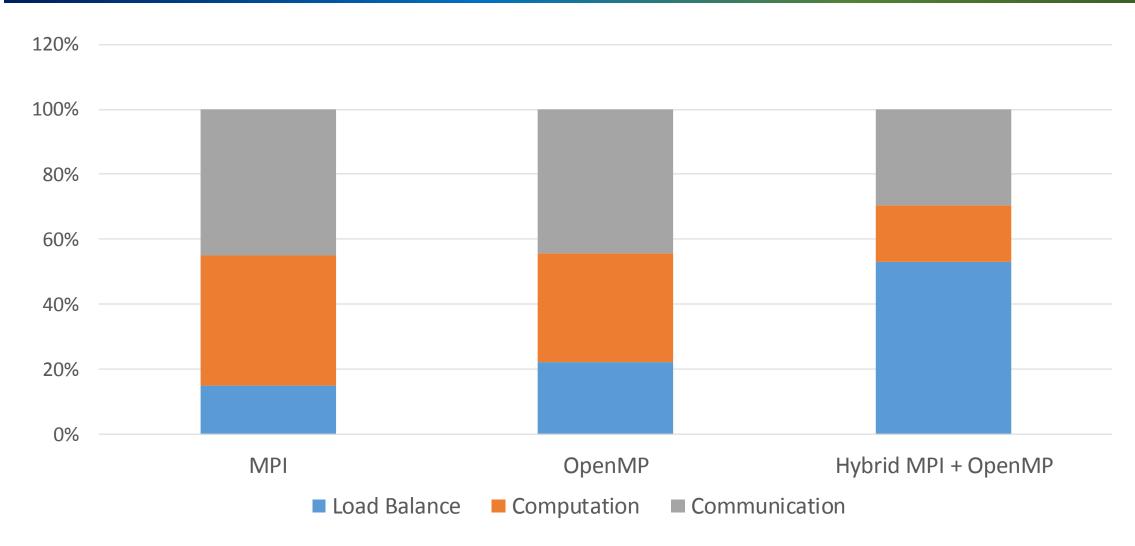
Application Sectors



Customer Types



Analysis of Inefficiencies


Leading Cause of Inefficiency

Inefficiency by Parallelisation

Success Stories

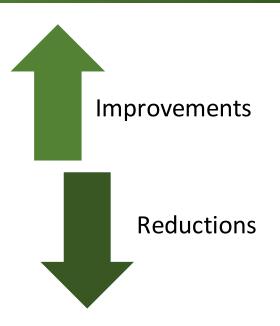
Some PoC Success Stories

• See

→ https://pop-coe.eu/blog/tags/success-stories

3x Speed Improvement for zCFD Computational Fluid Dynamics Solver

Proof of Concept for BPMF leads to around 40% runtime reduction


POP audit helps developers double their code performance

10-fold scalability improvement from POP services

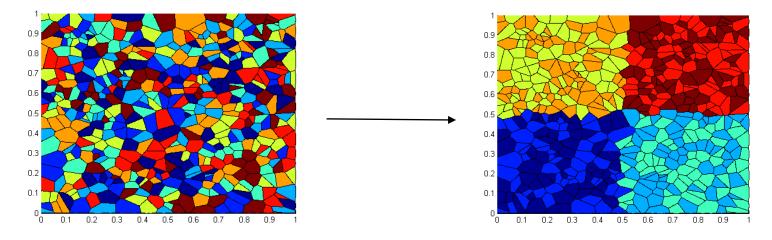
POP performance study improves performance up to a factor 6

POP Proof-of-Concept study leads to nearly 50% higher performance

POP Proof-of-Concept study leads to 10X performance improvement for customer

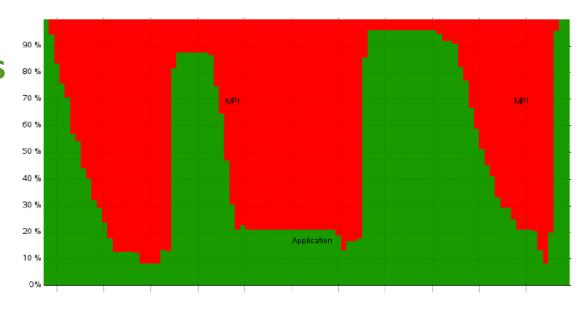
GraGLeS2D - RWTH Aachen

- Simulates grain growth phenomena in polycrystalline materials
- C++ parallelized with OpenMP
- Designed for very large SMP machines (e.g. 16 sockets and 2 TB memory)


- Key audit results:
 - Good load balance
 - Costly use of division and square root inside loops
 - Not fully utilising vectorisation in key loops
 - NUMA data sharing issues lead to long times for memory access

GraGLeS2D - RWTH Aachen

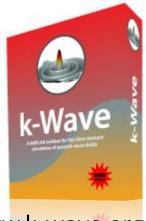
- Improvements:
 - Restructured code to enable vectorisation
 - Used memory allocation library optimised for NUMA machines
 - Reordered work distribution to optimise for data locality


- Speed up in region of interest is more than 10x
- Overall application speed up is 2.5x

Ateles – University of Siegen

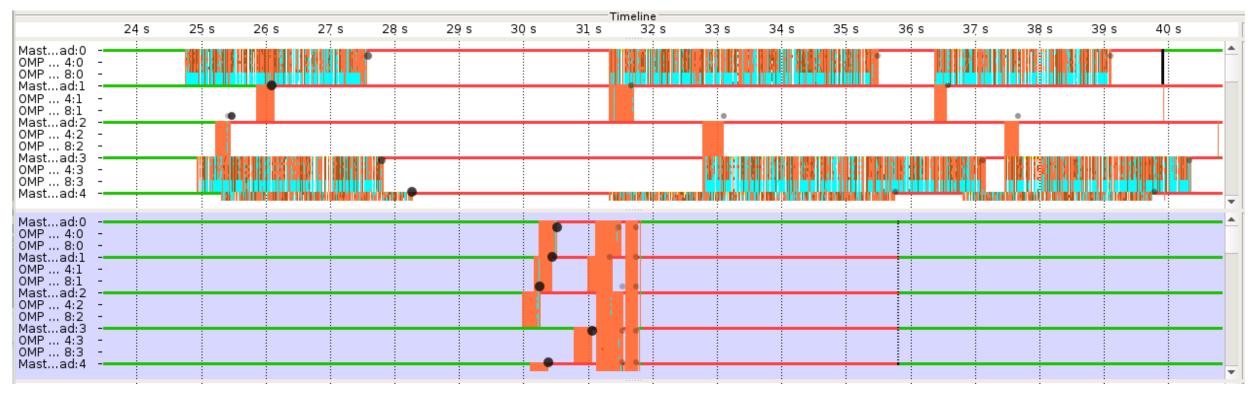
- Finite element code
- C and Fortran code with hybrid MPI+OpenMP parallelisation
- Key audit results:
 - High number of function calls
 - Costly divisions inside inner loops
 - Poor load balance
- Performance plan:
 - Improve function inlining
 - Improve vectorisation
 - Reduce duplicate computation

Ateles – University of Siegen


- Inlined key functions → 6% reduction in execution time
- Improved mathematical operations in loops → 28% reduction in execution time
- Vectorisation: found bug in gnu compiler, confirmed Intel compiler worked as expected
- 6 weeks software engineering effort
- Customer has confirmed "substantial" performance increase on production runs

k-Wave – Brno Uni. of Technology

- Toolbox for time domain acoustic and ultrasound simulations in complex and tissue-realistic media
- C++ code parallelised with Hybrid MPI and OpenMP (+ CUDA)
- Executed on Salomon Intel Xeon compute nodes
- Key audit findings:
 - 3D domain decomposition suffered from major load imbalance:
 exterior MPI processes with fewer grid cells took much longer than interior
 - OpenMP-parallelised FFTs were much less efficient for grid sizes of exterior, requiring many more small and poorly-balanced parallel loops
- Using a periodic domain with identical halo zones for each MPI rank reduced overall runtime by a factor of 2



www.k-wave.org

k-Wave – Brno Uni. of Technology

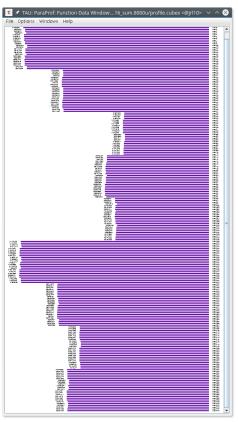
- Comparison time-line before (white) and after (lilac) balancing, showing exterior MPI ranks (0,3) and interior MPI ranks (1,2)
 - MPI synchronization in red, OpenMP synchronization in cyan

sphFluids – Stuttgart Media University

- Simulates fluids for computer graphics applications
- C++ parallelised with OpenMP
- Key audit results:
 - Several issues relating to the sequential computational performance
 - Located critical parts of the application with specific recommended improvements

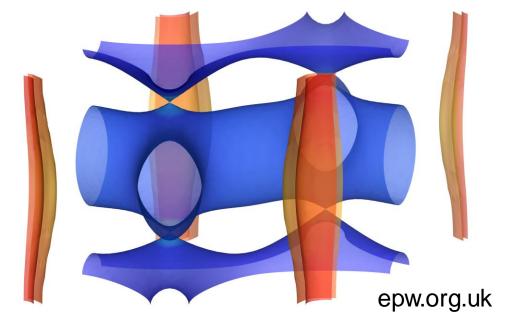
sphFluids – Stuttgart Media University

- Implemented by the code developers:
 - Review of overall code design from issues identified in POP audit
 - Inlining short functions
 - Reordering the particle processing order to reduce cache misses
 - Removal of unnecessary operations and costly inner loop definitions
- Confirmed performance improvement up to 5x 6x depending on scenario and pressure model used
- Used insights provided by the POP experts and the good information exchange during the work



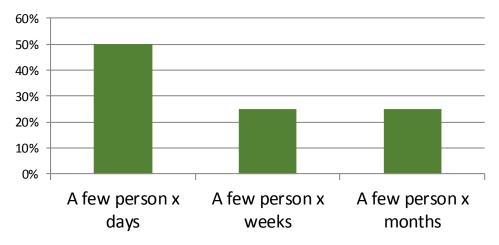
EPW – University of Oxford

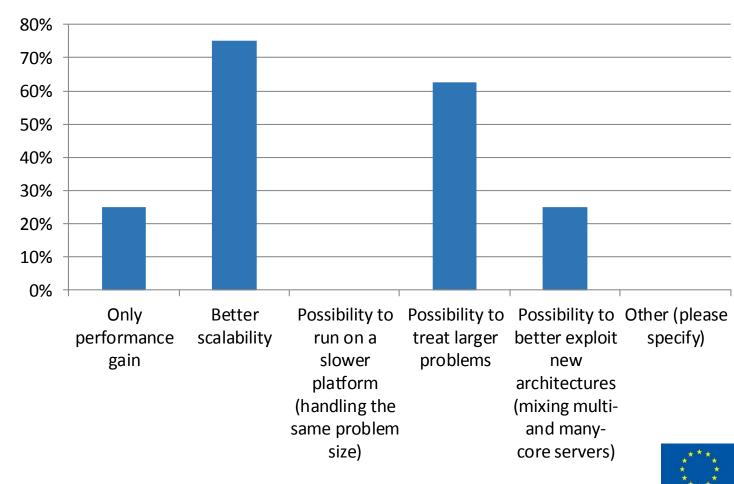
- Electron-Phonon Wannier (EPW) materials science DFT code;
- part of the Quantum ESPRESSO suite
- Fortran code parallelised with MPI
- Audit of unreleased development version of code
- Executed on ARCHER Cray XC30 (24 MPI ranks per node)
- Key audit findings:
 - Poor load balance from excessive computation identified
 - (addressed in separate POP Performance Plan)
 - Large variations in runtime, likely caused by IO
 - Final stage spends a great deal of time writing output to disk
- Report used for successful PRACE resource allocation



EPW – University of Oxford

- Original code had all MPI ranks writing the result to disk at the end
- POP PoC modified this to have only one rank do output
- On 480 MPI ranks, time taken to write results fell from over 7 hours to 56 seconds: 450-fold speed-up!
- Combined with previous improvements, enabled EPW simulations to scale to previously impractical 1920 MPI ranks
- 86% global efficiency with 960 MPI ranks


(Eight) Customers Success Feedback


What is the observed performance gain after implementing recommendations?

25%
25%
20% overall, 50% for the given module
50-75% (case dependent)
12%
Up to 62 %, depending on the use case.
6 - 47 % depending on the test case.
15%

How much effort was necessary?

What are the main results?

Summary & Conclusion

Customer Acquisition

Interactions with Leads

- 86% of users needed multiple interactions before signing up
 - Users with only 1 interaction referred by existing users
- Average number of interactions to sign up = 3.2
- Maximum number of interactions to sign up = 11

Conversions

- Over 1300 leads contacted throughout the project
- Conversion rate of 10.8% from leads to user
- Only 17 signed up without direct contact from POP

Costumer Feedback

Performance Audits (73 customers)

- About 90% very satisfied or satisfied with service
- About half of the customers signed-up for a follow-up service

Performance Plans (11 customers)

- About 90% very satisfied or satisfied with service
- All customers thought suggestions were precise and clear and 70% plan to implement the suggested code modifications
- About 2/3 plan to do use the POP services again

Proof-of-Concepts (8 customers)

- All customers very satisfied or satisfied with this service
- About 80% plan to implement further code modifications or complete the work of the POP experts

ROI Examples

Application Savings after POP Proof-of-Concept

- POP PoC resulted in 72% faster-time-to-solution
- Production runs on ARCHER (UK national academic supercomputer)
- Improved code saves €15.58 per run
- Yearly savings of around €56,000 (from monthly usage data)

Application Savings after POP Performance Plan

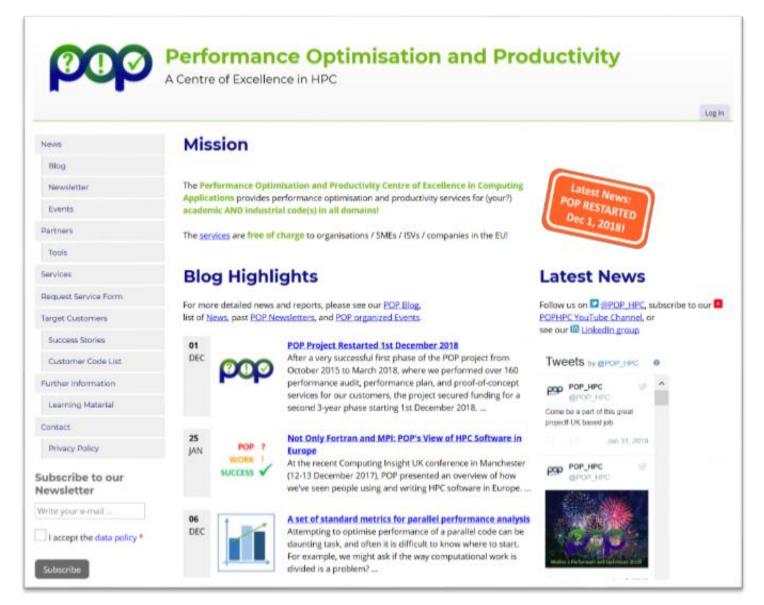
- Cost for customer implementing POP recommendations: €2,000
- Achieved improvement of 62%
- €20,000 yearly operating cost
- Resulted in yearly saving of €12,400 in compute costs ⇒ ROI of 620%

Summary & Conclusion (I)

- POP CoE Phase 1 finished in March 2018 after 2½ years
 - Successfully demonstrated expertise and impact
 - 152 Audits + Perf Plans / 22 Proof-of-Concept / 21 requests cancelled
 - 158 closed / 16 in progress
 - Intensive dissemination via website, blog articles, tweets, newsletter, ...
 - ⇒ Expected more interest from industry / SME / ISVs
- POP CoE Phase 2 restarted in December 2018 for 3 more years
 - New Service Structure (Performance Assessment combines Audit and Plan)
 - New Project Partners (IT4I, UVSQ)
 - New Co-design Data Repository

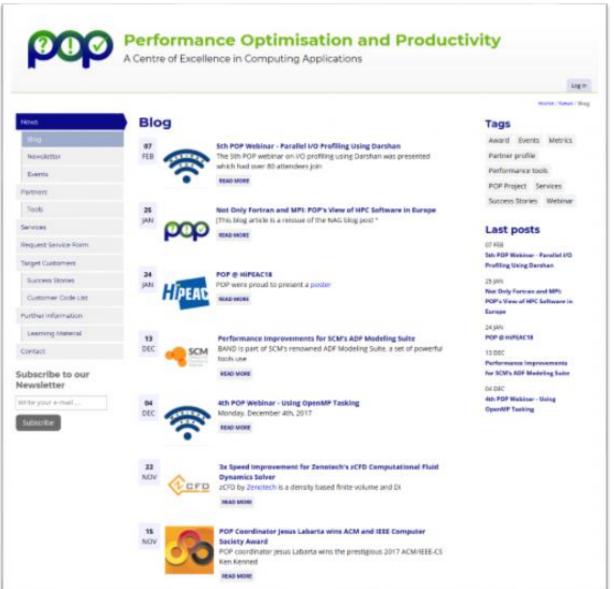
Summary & Conclusion (II)

- Issues identified
 - FREE (Money) ≠ FREE (Efforts, Time)
 - To much(?) customer effort (providing code, input, measurements?, feedback)
 - Desire to serve more industrial customers / SMEs, BUT
 - Resistance for allowing us to publish their results / success stories
 - Almost every time require NDA agreements
 - Sustainability
 - Real costs audit (EUR 16K-18K) >> Price customer would pay (5K-7K)


Dissemination and Contact

Website – www.pop-coe.eu

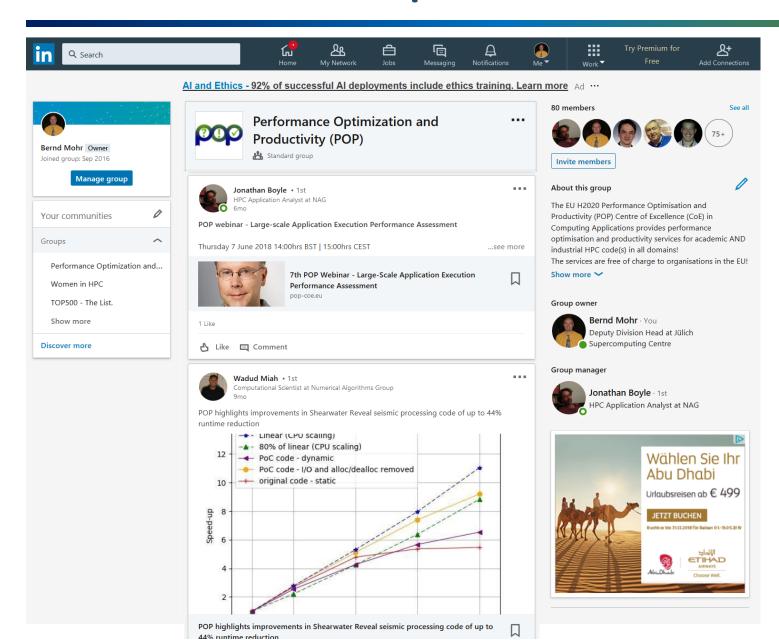
- POP User Portal
- Access to all public information and servcies



Blog - https://pop-coe.eu/blog

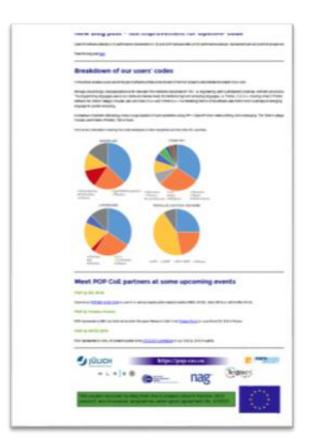
- Typically 2 new articles per month
- Easy filtering via Tags, e.g.
 - Success Stories
 - Events
 - Webinars
 - ...

Follow us on Twitter @POP_HPC



LinkedIn Group

- Important announcements
- Serves also as user forum


Quarterly Email Newsletter

- Subscribe on POP website
- Newsletter archive: https://pop-coe.eu/news/newsletter

Webinars / YouTube

- See
 ⇒ https://pop-coe.eu/blog/tags/webinar
- Or see our <u>YouTube Channel</u>

- Getting Performance from OpenMP Programs on NUMA Architectures
- Understand the Performance of your Application with just Three Numbers
- Using OpenMP Tasking
- Parallel I/O Profiling Using Darshan
- The impact of sequential performance on parallel codes
- Large scale Application Execution Performance Assessment

Performance Optimisation and Productivity

A Centre of Excellence in HPC

Contact:

https://www.pop-coe.eumailto:pop@bsc.es

@POP HPC

