
Performance Optimisation
and Productivity

Performance Analysis and
Optimisation Services

at your Fingertips!

Why you should use
our Services for
your HPC code!

or

3

•	 Excellence	in	performance	tools	and	tuning

•	 Excellence	in	programming	models	and	practices

•	 Research	and	development	background

•	 Proven	commitment	to	real	academic	and	industrial	use	cases

The POP Team

4

The	Performance Optimisation and Productivity (POP) Centre of
Excellence in Computing Applications	provides	performance		
optimisation	and	productivity	services	for	academic AND
industrial code in all domains!

The	services	are	free of charge	to	research	organisations,	SMEs,		
ISVs	and	companies	in	Europe!

What are the main performance issues of your code?

 ? Performance Audit Service

•	 Primary	service	

•	 Small	effort	(typically	1	month)

•	 Customer	receives	report

Determine root causes of issues found and quantify approaches
to address them!

 ! Parallel Application Performance Plan

•	 Follow-up	on	the	audit	service

•	 Longer	effort	(typically	1-3	months)

•	 Customer	receives	report

Perform experiments and code changes to show effect of
proposed optimizations

 9 Proof-of-Concept

•	 Follow-up	on	the	performance	plan	service

•	 6	months	effort

•	 Customer	receives	software	demonstrator

Services Provided

5

Customer Quotes

“The audit of the VAMPIRE code has
been extremely helpful in identifying the
hot spots and specific areas to focus on
performance improvements. Preliminary
results suggest this may give a factor of
2 performance improvement on modern
CPUs. I would highly recommend the
service for the speed and usefulness of
the audit.”

-- Richard Evans, VAMPIRE developer

“High performance computing is an
extremely interesting topic to our
application. The POP project has helped
Artelnics to speed-up Neural Designer
up to 5 times, when compared to the
serial version. And we can still improve a
lot more by implementing MPI processing
in computer clusters.”

 -- Dr Roberto Lopez, CEO Artelnics

“POP analysis elegantly reveals in detail
how our application’s algorithm is running
on HPC architectures. It is an extremely
useful optimisation tool! Our POP contact
was very knowledgeable and enthusiastic.
An excellent service!”

 -- Joseph Parker, GS2 Developer

6

POP Proof-of-Concept study leads to 10X performance
improvement for customer
The	Institute	of	Physical	Metallurgy	and	Metal	Physics	of	RWTH	Aachen	
University	(IMM)	develops	a	code	for	the	simulation	of	microstructure		
evolution	in	polycrystalline	materials,	called	GraGLeS2D.	The	OpenMP		
parallel	code	is	designed	to	run	on	large	SMP	machines	in	the	RWTH		
compute	cluster	with	16-sockets	and	up	to	2	TB	of	memory.	After	a		
POP	performance	audit	of	the	code,	several	performance	issues	were		
detected	and	a	performance	plan	on	how	these	issues	could	be	resolved	
was	set	up.

To	verify	the	proposed	optimization	steps,	POP	experts	and	the	code		
developer	at	IMM	implemented	these	steps	in	close	collaboration	as	the	
first	proof-of-concept	study	done	in	POP.	The	optimizations	include:

•	 The	use	of	a	memory	allocation	library	optimized	for	multi-threading.

•	 Reordering	the	work	distribution	to	threads	to	optimize	for	data	locality	
between	neighboring	cells.	(see	Figure	below)

•	 Algorithmic	optimizations	in	the	convolution	algorithm.

•	 Code	restructuring	to	enable	vectorization	in	parts	of	the		
computation.

Initial	work/data	distribution	over	sockets	(left)	compared	to	the		
optimized	distribution	(right).

After	these	optimization	steps	were	implemented,	a	significant	perfor-
mance	improvement	was	achieved.	For	the	hotspot	of	the	application,	the	
convolution	region,	the	speedup going from 1 to 16 sockets is about
15 instead of 6	as	it	was	before	the	optimization.	Overall,	the	runtime	of		
this	region	was	improved by a factor of more than 10X.	The	proof-of-
concept	verified	that	the	planned	optimizations	indeed	resulted	in	signifi-
cantly	better	code	performance.

Initial work/data distribution over sockets (left) compared to the optimized distribution (right).

GraGLeS2D Success Story

7

Initial work/data distribution over sockets (left) compared to the optimized distribution (right).

Ateles Success Story

Runtime for fluid dynamics code reduced
by nearly 50 %
The	Institute	for	Simulation	Techniques	
and	Scientific	Computing	of	the		
University	of	Siegen	develops	a	fluid	
dynamic	code	called	Ateles.	The	code		
is	written	in	Fortran	and	had	already	
shown	good	performance	on	HPC	
systems	in	the	past.	The	code	was	now	
extended	by	new	features	which	were	
analysed	within	a	POP	performance	
audit.	Several	issues	related	to	the	serial	
code	performance	were	identified	and	a	
performance	plan	on	how	these	issues	
could	be	resolved	was	set	up.

In	a	proof-of-concept	study	the	POP	
experts	verified,	that	the	proposed	code	
optimizations	lead	to	a	significant		
performance	improvement.

The	optimizations	included:

•	 Inlining	of	very	short	functionswith	
high	call	rates

•	 Parameter	and	variable	redefinitions	
that	allow	the	reduction	of	expensive	
CPU	operations	like	divisions

With	these	optimizations	applied	to	the	
real	code,	we	measured	for	the	provided	
test	case	a	performance increase of
nearly 50 % and	the	customer	was	able	
to	confirm	a	substantial	performance	
improvement	for	his	production	runs.

8

sphFluids Success Story

Insights into computer graphics code for fluids led to
a factor of 6 improvement
The	computer	animation	department	of	the	Stuttgart	Media	University,		
in	cooperation	with	the	Visualisation	Research	Centre	of	the	University		
of	Stuttgart,	develops	a	Smoothed	Particle	Hydrodynamics	solver	to		
simulate	fluids	for	computer	graphics	applications	called	sphFluids.		
The	Code	is	written	in	C++	and	was	mainly	developed	as	a	cross-platform	
desktop	application,	which	is	parallelized	with	OpenMP.

The	sphFluids	code	supports	the	most	common	pressure	as	well	as	viscosity	
models.	Additionally,	various	approaches	to	model	surface	tension	are	
integrated.	More	details	can	be	found	in	the	paper	„Evaluation	of	Surface	
Tension	Models	for	SPH-Based	Fluid	Animations	Using	a	Benchmark	Test“.

The	sphFluids	code	underwent	a	POP	performance	audit,	which	identified	
several	issues	related	to	the	sequential	
computational	performance.		
The	good	information	exchange	with	the	
POP	experts	during	the	study	helped	the	
code	developers	to	identify	critical	parts	
in	their	application.

One	of	the	issues	found	was	code	regions	
with	low	instruction	per	cycle	(IPC)		
values.	Several	causes	for	this	were		
pointed	out	including:

•	 Definitions	of	variables	in	inner	loops

•	 Unnecessary	operations	caused	byindirections	in	the	code	design

•	 Non-inlined	functions

•	 Cache	misses,	due	to	memory	calls

Based	on	the	audit,	the	code	developers	could	optimize	the	identified	parts	
in	the	code	by,	e.g.,	inlining	very	short	functions	that	were	used	frequently	
or,	regarding	the	cache	misses,	reorder	the	particle	processing	order.	These	
modifications	improved	the	performance	of	the	code	by	about	100 %.	
Furthermore,	they	identified	similar	issues	in	other	parts	of	the	code	and	
reviewed	the	overall	code	design.	The	developers	came	to	the	decision	
to	completely	rewrite	the	simulation	code.	Using	the	insights	gained	from	
the	POP-Experts,	they	could	optimize	the	simulation	performance	further,	
which	led	to	an	overall performance improvement up to 500 % - 600 %,	
depending	on	the	scenario	and	pressure	model	used.

9

EPW Success Story

University of Oxford code scalability improved 10-fold
EPW	(Electron-Phonon	using	Wannier	interpolation)	is	a	materials	science	
DFT	code	distributed	in	the	Quantum	ESPRESSO	suite.		It	is	Fortran	code	
parallelised	with	MPI.		Developers	from	the	University	of	Oxford	requested	
a	POP	performance	audit	of	an	unreleased	version	of	the	code	that	was	
still	in	development,	to	be	tested	with	a	GaN	polar	wurtzite	crystal	dataset	
on	the	ARCHER	Cray	XC30	computer	at	EPCC.

The	initial	audit	of	48	processes	identified	a	variety	of	load	imbalance	
issues,	and	excessive	time	in	the	
ephwann	simulation	phase.	This	
became	the	focus	of	a	subsequent	POP	
performance	plan,	where	the	developers	
specialized	routines	to	avoid	unneces-
sary	calculation	and	optimize	vector	
summations.	

Using	a	finer		
uniform	grid	
reduced	load		

imbalance	and	this	revised	version	was	60 %	faster	
and	could	be	used	for	larger	execution	configurations	
with	240	MPI	processes.

Unfortunately,	overall	performance	was	disappointing,	
with	writing	the	final	simulation	results	having	grown	
to	dominate	execution	time.	The	figure	shows	a		
histogram	of	the	writing	time	varying	by	MPI	process		
on	nine	compute	nodes.	Although	the	amount	of		
data	is	not	large	(around	50MB	of	formatted	text),	it	was	
a	bottleneck	inhibiting	scaling	and	larger	simulations.		
A	POP	proof-of-concept	investigation	was	pursued	
which	replaced	file	writing	concurrently	by	all		
processes	with	serial	writing	only	by	rank	zero.		
This reduced writing time from over seven
hours to under one minute,	and	now	a	negligible	
component	of	EPW	execution.

The final code scales well with 85 % parallel
efficiency for 960 MPI processes,	supporting	
larger	simulations.		These	POP	reports	helped		
support	EPW	readiness	to	productively	utilize	addi-
tional	larger	allocations	of	computational	resources.

10

Open-source acoustic simulation code runtime halved
k-Wave	is	an	open-source	toolbox	for	time	domain	acoustic	and	ultrasound	
simulations	in	complex	and	tissue-realistic	media.	Simulation	functions	are	
based	on	the	k-space	pseudospectral	method.

POP	was	requested	by	developers	from	Brno	University	of	Technology	to	
audit	the	C++	version	parallelised	with	MPI+OpenMP	executing	on	the	
Salomon	supercomputer	hosted	by	IT4Innovations	in	the	Czech	Republic.		
A	configuration	of	32	dual-processor	Intel	Xeon	compute	nodes	was	used	
running	64	MPI	processes	each	with	12	OpenMP	threads.		The	3D	domain	
decomposition	employed	(4x4x4	process	arrangement)	was	discovered	
to	suffer	from	poor	performance	with	large	amounts	of	both	MPI	and	
OpenMP	synchronization	time	arising	from	major	load	imbalance.

The	figure	shows	an	extract	of	the	time-line	visualization,	showing	the	
three	FFTW	phases	for	one	timestep	of	the	first	four	MPI	processes.		
Originally	(top	with	white	background),	the	interior	processes	(ranks	1&2)	
wait	in	MPI	communication	(red)	for	the	much	slower	exterior	processes	
(ranks	0&3)	where	many	more	small	and	poorly-balanced	parallel	loops	
have	lots	of	OpenMP	synchronization	time	(cyan).		Although	the	exterior	
MPI	processes	have	fewer	grid	cells,	the	OpenMP-parallelized	FFTs	from	
the	FFTW	library	are	much	less	efficient	as	they	have	a	larger	FFT	base.

With	this	insight,	the	developers	were	quickly	able	to	apply	a	periodic		
domain	with	identical	halo	zones	for	each	MPI	rank	(lower	time-line	with	
lilac	background),	with	the	result	that	the	execution is now more than
twice as fast.	Both	versions	of	the	code	are	compared	in	the	POP		
performance	audit.

k-Wave Success Story

11

BPMF Success Story

Data analysis code used to predict movie ratings
improved by around 40 %
Modelling	complex	data	sets	is	a	major	problem	today.	An	example	here	
is	prediction	of	compound-on-target-activity	in	chemogenomics	from	
the	ChEMBL	data	set	with	more	than	2	Million	compound	records.	The	
compound-on-target-activity	study	at	large	scale	is	an	extremely	impor-
tant	question	in	the	process	of	discovering	new	drugs,	which	is	currently	
addressed	in	the	ExCAPE	project.	The	Bayesian	Probabilisitc	Matrix		
Factorization	(BPMF)	is	an	efficient	method	to	solve	these	kind	of		
problems.	The	BPMF	code	was	analysed	in	a	POP	Audit	and	Performance		
Plan	service	activity.	While	the	BPMF	code	had	already	shown	scalability	
over	several	100	nodes	and	also	good	efficiency	on	the	node	level,		
POP	experts	could	still	identify	points	for	improvement.

So	a	follow-up	Proof	of	Concept	study	was	performed	together	with		
the	customer.	During	the	study	several	points	were	addressed.	Besides		
optimization	of	the	linear	algebra	computations	and	improvement	of	the	
selection	process	for	optimized	algorithms	inside	BMBF,		the	main	and	
most	challenging	issue	was	load	balance.	Due	to	the	nature	of	the	prob-
lems	solved	with	BPMF,	the	datasets	include	very	inhomogeneous	data,	
which	result	in	load	balance	problems	in	the	parallelization.	BPMF	there-
fore	comes	with	a	hybrid	MPI+OpenMP	parallelization.	The	still	existing	
load	balance	problem	found	was	at	the	lower	OpenMP	level.	Here	a	single	
level	OpenMP	parallelization	was	used	on	the	node	level.

The	POP	experts	now	implemented	a	second	nesting	level	and	also	made	
use	of	OpenMP	tasks,	which	solved	the	load	balance	problem.	Originally	
the	load	balance	of	the	problematic	code	part	was	42.5 %	–	after	the	
modifications	98.9 %.	Finally,	the	improvements	made	in	this	POP	Proof	of	
Concept	were	evaluated	with	three	different	datasets	achieving speedups
between 1.6 and 1.8 that correspond to runtime reductions between
38 and 44 %.

12

ADF Success Story

Load balance of flagship computational chemistry
application improved leading to factor of two runtime
reduction
ADF	is	the	flagship	code	from	Software	for	Chemistry	and	Materials	
(SCM)	company	based	in	The	Netherlands.	It	is	a	computational	chemistry	
application	which	uses	density	functional	theory	calculations	to	predict	the	
structure	and	reactivity	of	molecules.

A	POP	Audit	and	Performance	Plan	were	carried	out	on	their	new	Hartree-	
Fock	exchange	implementation	which	is	an	important	new	feature	of	the	
application.	The	application	uses	MPI	and	shared	memory	within	a	node		
to	parallelise	the	problem.

The	main	issue	located	was	the	load	imbalance	due	to	unequal	distribution	
of	work,	there	was	also	low	computational	scalability	but	that	was	found	to	
be	an	artefact	of	the	time	cores	spent	idle	waiting	to	be	distributed	work.	
The	communication	efficiency	was	found	to	be	good	and	did	not	need	
further	investigation.

A	recommendation	was	made	to	improve	the	load	balancing	algorithm	
with	an	expected	performance	improvement	of	a	factor	of	two	for	good	
balance.

On	128	cores	the	section	of	imbalanced	work	took	4.24s	for	45	atoms.	
Dynamic	load	balancing	was	implemented	by	the	SCM	developers	with	a	
dedicated	dispatcher	process	to	farm	out	the	work	to	all	other	cores.	This	
reduced	the	runtime	to	1.992s	which	is	a	performance improvement of
over 2 times,	as	was	estimated	in	the	POP	Performance	Plan.

Original timeline of load balance for Hartree-Fock exchange, communication lines in black

13

zCFD Success Story

3x Speed Improvement for Zenotech’s zCFD Computational Fluid
Dynamics Solver

zCFD	by	Zenotech	is	a	density	based	finite	volume	and	Discontinuous	
Galerkin	(DG)	computational	fluid	dynamics	(CFD)	solver	for	steady-	
state	or	time-dependent	flow	simulation.	It	decomposes	domains	using	
unstructured	meshes.	It	is	written	in	Python	and	C++	and	parallelised	with	
OpenMP	and	MPI.

POP	conducted	a	Performance	Audit	to	identify	potential	areas	for		
improvement.	This	identified	that	the	code	was	spending	a	surprisingly	
large	amount	of	time	executing	in	serial	and	that	one	particular	OpenMP	
loop	was	suffering	from	load	imbalance.	POP	also	noted	that	the	CPU	
frequency	was	being	lowered	when	the	code	was	run	on	the	maximum	
number	of	threads	(12	for	the	machine	used	in	the	Audit).

As	a	result,	Zenotech	made	a	number	of	changes	to	the	code:

•	 Parallelising	serial	portions	of	code.	

•	 Improving	load	balance.	

•	 Removing	OpenMP	regions	that	were	being	created	on	multiple	threads.	

•	 Memory	management	modifications.	

•	 Changing	execution	environment	settings	to	boost	CPU	performance.	

For	the	test	case	used	in	the	study,	these	improvements	meant	the	code	
ran	1.65x	faster	on	12	threads.	When	Zenotech	applied	the	modified	code	
to	a	test	case	that	was	100x	larger,	they	observed a 3x performance
improvement over the old code	on	12	threads.	The	average	cycle	time	
fell	from	3,253ms	to	1,185ms,	which	corresponds	to	going	from	10.4	
GFlop/s	to	30.6	GFlop/s	for	a	single	Broadwell	socket.

14

BAND Success Story

Big Performance Improvements for SCM’s ADF Modeling Suite

BAND	is	part	of	SCM’s	renowned	ADF	Modeling	Suite,	a	set	of	powerful	
tools	used	by	academic	and	industrial	research	chemists,	and	written	in	
Fortran	with	MPI	parallelisation.	ADF	wanted	to	know	if	POP	could	help	
improve	parallel	performance.

After	a	POP	Audit	and	two	Performance	Plans,	which	analysed	various	
components	of	BAND,	a	POP	Proof	of	Concept	focussed	on	improving	
performance	of	complex	matrix	multiplications.	The	earlier	work	had		
determined	that	for	multiplication	of	small	matrices	the	parallel	scaling	
was	limited	by	underperformance	of	BLAS/PBLAS	routines	coupled	with		
a	large	percentage	of	time	within	MPI	data	transfer.

The	Proof	of	Concept	identified	and	implemented	a	range	of	improve-
ments,	which	included	overlapping	computation	with	communication,	
improved	use	of	BLAS	which	doubled the speed of computation,	and	
reorganising	the	algorithm	to	reduce	the	amount	of	data	communicated		
via	MPI.	The optimised subroutine showed four times speed up,		
compared	to	the	original	code,	on	eight	36-core	compute	nodes.

15

Performance Audit and Plan
Statistics

3

Fortran

C/C++

Other**

59
47

31

4

5
4

6

Python

2

MPI

Other**

OpenM
P

Accelerator

60
12

56

11

8

1
3

1

4 + 4

1

3

Fortran

C/C++

Other**

59
47

31

4

5
4

6

Python

2

MPI

Other**

OpenM
P

Accelerator

60
12

56

11

8

1
3

1

4 + 4

1

Programming
Models used

Programming
Languages used

* Based on data collected for
 161 POP Performance Audits

** TCL
 Matlab
 Perl
 Octave
 Java

* Based on data collected for
 161 POP Performance Audits

** MAGMA
 Celery
 TBB
 GASPI
 C++ threads
 MATLAB PT
 StarPU
 GlobalArrays
 Charm++
 Fortran Coarray

16

Performance Audit and Plan
Statistics

Application Sectors

Customer Types

* Based on data collected for 161 POP Performance Audits

17

Customer Satisfaction

Performance Audits
(73	customers)

Performance Plans
(11	customers)

Proof-of-Concepts
(8	customers)

•	 Over	90	%	very	satisfied	or	satisfied	with	service

•	 About	half	of	the	customers	signed-up	for	a	
follow-up	service

•	 About	90	%	very	satisfied	or	satisfied	with	service

•	 All	customers	thought	suggestions	were	precise	
and	clear	and	70	%	plan	to	implement	the		
suggested	code	modifications

•	 About	2/3	plan	to	do	use	the	POP	services	again

•	 All	customers	very	satisfied	or	satisfied	with	this	
service

•	 Over	80	%	plan	to	implement	further	code	modifi-
cations	or	complete	the	work	of	the	POP	experts

18

ROI Examples

Application Savings after POP Proof-of-Concept

•	 POP	PoC	resulted	in	72	%	faster-time-to-solution

•	 Production	runs	on	ARCHER	(UK	national	academic	supercomputer)

•	 Improved	code	saves	€15.58	per	run

•	 Yearly	savings	of	around	€	56,000	(from	monthly	usage	data)

Application Savings after POP Performance Plan

•	 Cost	for	customer	implementing	POP	recommendations:	€	2,000

•	 Achieved	improvement	of	62	%	

•	 €	20,000	yearly	operating	cost

•	 Resulted	in	yearly	saving	of	€12,400	in	compute	costs		ROI	of	620	%

Imprint

Editor:	 Bernd	Mohr		
	 (Forschungszentrum	Jülich	GmbH)	

Graphic	Design:	 Nadine	Daivandy		
	 (Forschungszentrum	Jülich	GmbH)

Photos:	 	 POP	project	(page	2)

	 	 Graphics	provided	by	customers,		
	 	 used	with	permission

Copyright:	 	 POP	Project

	 	 March	2018

Performance Optimisation
and Productivity

The	POP	Centre	of	Excellence	is	funded	from	October	2015	to		
March	2018.	

A Centre of Excellence
in Computing Applications

This project has received funding from the European Union‘s Horizon 2020 research
and innovation programme under grant agreement No 676553.

Contact
Twitter:	 @POP_HPC

LinkedIn:	 POP	group

You	Tube:	 POP	HPC

Web:	 https://www.pop-coe.eu

Email:	 pop@bsc.es

For	POP	webinars	and	newsletter		
subscription	see	website

