NEST-5g performance assessment report

Document Information

Reference Number | POP_AR_111 (NEST-5g)
Author Brian Wylie (JSC)
Contributor(s)

Date April 9, 2018

Notices: The research leading to these results has received funding from the Furopean Union's Horizon 2020

research and innovation programme under grant agreement No 676553.

©2018 POP Consortium Partners. All rights reserved.

0009

POP Ref.No. POP_AR_111 (NEST-5g) CONTENTS

Contents

1 Background 3
2 Setup 3
3 Application structure and Focus of Analysis 3
4 Scalability 5
5 Parallel efficiency metrics 6
6 Load balance 7
7 Serial computation 7
8 Communication & Synchronization 8
9 Summary of observations 11

0009

POP Ref.No. POP_AR_111 (NEST-5g)

1 Background

Applicants Name: Jari Pronold

Institution: Institute of Neuroscience and Medicine (INM-6), Forschungszentrum Jiilich
Contributors: Itaru Kitayama & Jun Igarashi (RIKEN), Markus Diesmann, Jakob Jordon,
Suzanne Kunkel, Moritz Helias (FZJ)

Application Name: NEST-5g (development version of 2017/05/31 tagged ‘2aa733a’)
Programming Language: C++

Programming Model: MPI+OpenMP (MPI. THREAD SERIALIZED)

Source Code Available: yes (GPL license: www.nest-simulator.org)

Performance study: check (audit)

User description: investigation of simulation scalability on K computer

Application Description: NEST is a simulator for large-scale neuronal networks of simple
neuron models with biophysically plausible density of connections.

Input data: hpc_benchmark.sli

Testcase Description: 1 MPI process with 8 OpenMP threads per compute node.
Machine Description: K computer at RIKEN AICS, comprising 82,944 compute nodes con-
nected by proprietary Tofu interconnect in a 6D mesh/torus, and with Lustre-based Fujitsu
Exabyte File System. Each node has a single Fujitsu SPARC64 VIIIfx 8-core 2.0 GHz processor
and runs a Linux-based OS. Fujitsu compilers and MPI (based on OpenMPI) are provided.
Analysis tools: Scalasca/2.3.1 using Score-P/3.1 (environment K-1.2.0-22)

2 Setup

The specified hpc_benchmark.sli testcase for weak-scaling executions of typical petascale neu-
ronal network simulation has a balanced random network of 12,500 neurons per MPI process
with 11,500 (9000 excitatory plus 2250 inhibitory) incoming synapses per neuron, and with
network dynamics simulated for 500ms of biological real time (Tsim500).

An instrumented version! of NEST-5g for measurement was built on K computer using Score-
P with manual user annotation of the key application execution phases combined with OpenMP
source construct pre-processing and MPI library interposition. Measurement executions were
done on K computer with different numbers of compute nodes, with a single MPI process and
eight OpenMP threads per compute node.

3 Application structure and Focus of Analysis

The execution timeline of NEST-5g in Figure 1? clearly distinguishes the three primary phases:
the initial connect phase (aka “build time”) to construct all nodes and the postsynaptic part
of the connection infrastructure, followed by simulation prepare phase (aka “presim time,”
constructing the presynaptic part of the connection infrastructure and a short pre-simulation
where initial transients of the network dynamics subside, dominated by the OpenMP parallel
region starting at simulation_manager.cpp line 457) and simulation run phase (aka “sim time,”
dominated by the OpenMP parallel region starting at simulation_manager.cpp line 772), and

!pre-release development dated May 2017 tagged ‘2aa733a’
2Vampir display quick reference:
https://pop-coe.eu/sites/default/files/pop_files/vampir_display_quickref.pdf

www.nest-simulator.org
https://pop-coe.eu/sites/default/files/pop_files/vampir_display_quickref.pdf

POP Ref.No. POP_AR_111 (NEST-5g)

000

dit Chart Filter Window Help

[_

553103205

0s 100 s

es, Exclusive Tlme per Function Group

OMP_PARALLEL

150 s

200s

Timeline

300s

350s

400 s

450 s

iP_PARALLEL

5005 5505 |

Figure 1: Execution timeline of NEST-5g Tsim500 execution using 4092 MPI processes each

with 8 OpenMP threads on K computer.

Thread activity chart of the master thread of MPI rank 0 at bottom showing connect phase (in
dark green) between 40 and 125 seconds, followed by simulation prepare (yellow) phase until

370 seconds and run (light green) to completion at 550 seconds.

Above it are the function time summary chart and timeline state chart of all 32,736 threads
at top, where OpenMP parallel computation is brown, OpenMP synchronization is cyan, MPI
collective communication is orange and other MPI (including Init and Barrier) is red.
There are 31 MPI Alltoall communications in the prepare phase, and 355 in the run phase.

POP Ref.No. POP_AR_111 (NEST-5g)

a final short cleanup. Although here the prepare phase is longest, consisting almost entirely
of MPI and OpenMP synchronization, the run phase is the more interesting focus of analysis
(FOA) as it would be much longer in real simulations.

Figure 2 shows a NEST-5g execution call-tree extract from a profile measurement on K
computer.® The manually-annotated simulate phase is split into prepare (shown collapsed) and
the expanded run phase with the OpenMP parallel region of simulation_manager.cpp starting
at line 772 containing a variety of OpenMP synchronization constructs (of type atomic, crit-
ical, single, and both explicit and implicit barriers). MPI collective communication, such as
MPI_Alltoall occurs in a structured block (sblock) from line 470 to 485 of event_delivery man-
ager.cpp, requiring MPI_THREAD_SERIALIZED thread support to allow it to be executed by the
first available thread on each MPI rank. (MPI_Alltoall is preceded by explicit synchronization
with MPI_Barrier.)

CubeGUI-4. rep_ne m/POP_summar

File Display Plugins Help

Absolute [vl Metric root percent |'| Peer percent [vl

. Metric tree | . Call tree | Flat view | . System tree | . BoxPlot |

= [0 -0.00 Time (sec) =il =[O 0.00 simulate =

~ [J 0.00 Execution b 57.50 100.00 31684
| 2.20e8 Com i

= [0.00 MPI

b [0 0.00 Management

< [0.00 Sénchronization

= [1 0.00 Communication
[1 0.00 Point-to-point

p barrier @simula

P s!ngle @evel

single @eve 80.00

livery | g
elivery_manage
b [0 0.00 File /O livery_mana
< [0.00 CpenMP i age
+ [0 0.00 Synchrenization

~] 0.00 Barrier

r @event y_manager 485 50.00
¢ @event delivery manac :470)

W 54
[0 0.00 Lock API
[0.00 Ordered
[0.00 Task Wait

[1 0.00 Flush
8.02e9 Visits (occ)
2,87el5 Bytes transferred (bytes)
0 MPI file operations (oce)
7.33e6 Computational imbalance (0 p i c p:1047]
0.73 Load balance efficiency 1
0,62 Communication efficiency
0.45 Parallel efficiency

p barrier @evel

p single @evel
single @eve

p barrier @eve|

p barrier @evel

p barrier @simula

40.00

20.00

v v
EEEECOEE

1)
b [0 0.00 cleanup

0.00

| [+ | LI ;]| All(663552 elements) [+

0.00 4.95e8 (100.00%) 4.95e8| |0.00

0.00 100.00

Selected "run” J

Figure 2: Scalasca analysis report explorer presentation of NEST-5g Tsimb00 profile extract
from execution on 82,944 compute nodes of K computer. Execution call-tree in the centre pane
with simulation run phase expanded and selected (highlit), annotated with percentage of total
CPU time accumulating to 317 seconds on each of the 663,552 threads.

4 Scalability

Figure 3 shows the weak scaling performance of NEST-5g from 128 to all 82,944 compute nodes
of K computer. connect (build_edge) time is roughly constant 80 seconds, whereas both prepare
(presim) and run (sim) take exponentially longer with increasing numbers of compute nodes.

3Cube display quick reference:
https://pop-coe.eu/sites/default/files/pop_files/cube_display_quickref.pdf

5

https://pop-coe.eu/sites/default/files/pop_files/cube_display_quickref.pdf

POP Ref.No. POP_AR_111 (NEST-5g)

500 7 | | | | |
B — build_edge .
— presim
400 — — sim500 m

300

Time [sec]

200

100

L | | | | | | | | |
0 1024 2048 4096 8192 16384 32768 65536 131072 294912 663552

Cores

Figure 3: Wallclock execution time of NEST-5bg weak-scaling testcase on K computer, distin-
guishing initial build_edge (connect), preparatory presim (prepare) and actual simulation (run).

5 Parallel efficiency metrics

Basic parallel efficiency metrics* are defined where the higher the value (closer to 1.00) then the
better is the efficiency. Load balance is the ratio of average computation to maximal computation
time. Communication efficiency is the ratio of maximal computation to maximal executing
time. Parallel efficiency is the ratio of the average computation time to the maximal executing
time which is also the product of Load balance and Communication. Computation efficiency
reflects how total computation time scales, here using the 36-node execution as reference. Global
efficiency is then the product of Computation and Parallel efficiencies.

Table 1: Efficiency metrics for NEST-5g testcase

Processes/nodes | 128 | 256 | 512 [1024 | 2048] 4096 8192[16384 36864 | 82944
Cores/threads |1024 | 2048 | 4096 | 8192 |16384(32768|65536(131072(294912 663552

Global efficiency 0.62 10.60/ 0.53 0.49 0.45| 0.45 02 |
- Parallel efficiency 0.72 | 0.70 0.78 | 0.73 | 0.70 [0¥GEl [O¥GT 0.42
0.98 0.92 | 0.73 0.45
0.72 | 0.92
0.69 0.67

- - Communication eff. |[0:99] 0.90 | 0.90 | 0.78
- - Load balance eff. 0.73 0.71 0.87 | 0.81 | 0.90 0.94
- Computation eff. 0.95 | 0.89 0.7710.73 | 0.70 0.63

=
o
¢

=
')
]

4POP standard metrics for parallel performance analysis: https://pop-coe.eu/node/69

https://pop-coe.eu/node/69

POP Ref.No. POP_AR_111 (NEST-5g)

Table 1 and Figure 4 give an overview of the scaling efficiency of the NEST-5g Tsim500 weak-
scaling testcase executions. There is a general degradation of global efficiency to 0.27 as scale
increases, with a gradual reduction of computation efficiency to 0.63 and more erratic reduction
of parallel efficiency to 0.45, where the latter has contributory factors of communication and
load balance efficiency which seem to vary significantly.

| T | I | | | | | | | 1.0
0.8
0.6 -
(@]
C
0
Global é
= - Parallel L
- - Communication 0.4
— - - Load balance
— - Computation
0.2
| L | | | | | | | | | 0.0
288 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 294,912 663,552)

Cores

Figure 4: Efficiencies of simulation run phase.

6 Load balance

Load balance efficiency is highly variable between 0.68 and 0.94, with remarkably good efficien-
cies for some of the largest configurations. Despite the very good 0.94 load balance efficiency
for 663,552 cores, closer examination in Figure 6 shows thread computation time ranging from
131 to 142 seconds and process computation time ranging from 1051 to 1100 seconds.

Load balance in the run phase of the NEST simulation test case relies on the randomly
connected network of synapses, and fluctuations as the simulation progresses in the number of
spike events generated by each neuron for other neurons in the network.

7 Serial computation

Computation efficiency degrades progressively and only remains above 0.80 until 4,096 cores,
after which the rate of degradation diminishes continuing down to 0.63 for 663,552 cores. Mean
computation time is also seen to progressively increase in the time breakdown in Figure 5,

0009

POP Ref.No. POP_AR_111 (NEST-5g)

400 — | | |
OMP ibarrier
Bl OMP ebarrier
MPI coll comm
320 H MPI coll synch
| Computation
— 240
(6]
0]
L,
o)
£
" 160
0

1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 294,912 663,552
Cores

Figure 5: Breakdown of CPU time in simulation run phase.

indicating substantially growing computation for each thread as the total number of threads
increases. (For perfect weak scaling, local computation is expected to remain constant.)

Figure 7 shows a time breakdown of the simulate sub-phases for process rank 0 provided
by the application itself, where a large growth in GatherSpikeData::collocate dominates
and lesser growth in GatherSpikeData::deliver are both evident. These sub-phases relate
to packing and unpacking the spike event data buffers (before and after exchange between
processes in GatherSpikeData: : communicate). In comparison, the actual neuron computation
Update increases only slowly and remains relatively small.

Further measurements employing hardware performance counters (such as those for cache
misses) would be necessary to investigate potential reasons for this inefficiency.

8 Communication & Synchronization

Figure 7 shows the dramatic increase in time for GatherSpikeData: : communicate where MPI
communication is done by a single OpenMP thread in each round of communication exchange.

The Figure 5 breakdown of time in NEST-5g simulation run phase shows MPI and OpenMP
synchronization times also grow with scale, and are particularly marked at the largest scales:
OpenMP synchronization time is 7-9 times the MPI time, as might be expected from 7 threads
waiting in OpenMP synchronization while one thread performs MPI operations. Implicit
OpenMP barrier synchronization after the structured block in the OpenMP single construct
used for MPI_Alltoall exchange of electrical impulses (“spike data events”) is the dominant
parallelization overhead, which is partially due to waiting time synchronizing the MPI processes
arising from preceding computational imbalance.

8

POP Ref.No. POP_AR_111 (NEST-5g)

CubeGUI-4.4.0TP3: scorep_nest_82944x8_sum/POP_summary.cubex <@|rl08>

File Display Plugins Help

Absolute - | Metric root percent = | Peer percent - |
Metric tree | | calltree | Flat view | | system tree | [E| BoxPlot ‘
= [0 -0.00 Time (sec) =il =[O 0.00 simulate =]
- [0 0.00 Execution b 57.50 prepare 100.00 T 142 .26
< 000run !
~ [J 0.00 MPI b [0.00 '$omp critical (logging) @logging manager.cpp: 122 == 133.39
b [0.00 Management ~ W 17.93 '$omp parallel @simulation manager.cpp.772|
~ [0 0.00 Synchronization [0.45 !$omp barrier @simulation_manager.cpp:969
b O 0.00 '$omp single @event_delivery_manager.cpp:330
~ [0.00 Communication b [0.22 '$omp single @event_delivery_manager.cpp:412 §0.00
[0.00 Point-to-paoint [0.03 !'$omp barrier @event_delivery_manager.cpp:450
0 0.00 '$omp atomic @event_delivery_manager.cpp:455
b [0.00 File yO O 0.03 !'$omp barrier @event_delivery_manager.cpp:457
~ [0.00 OpenMP ~ [0.00 !$omp single @event_delivery_manager.cpp:470
~ [0.00 Synchronization O 20.59 '$omp implicit barrier @event_delivery_manager.cpp:485 50.00
~ [J 0.00 Barrier = [0.00 !$omp single sblock @event_delivery_manager.cpp:470
O 0.87 MPI_Barrier
O 2.07 MPI_Alltoall
L [0.00 !$omp atomic @event_delivery_manager.cpp:489
[0 0.00 Lock API O 0.29 '$omp barrier @event_delivery_manager.cpp:494
O 0.00 Ordered b [0.00 !$omp single @event_delivery_manager.cpp: 436 Y
[0.00 Task Wait b [0.00 '$omp single @event_delivery_manager.cpp:508
[] 0.00 Flush [0.00 !$omp barrier @event_delivery_ manager.cpp:514
B 0 0.00 '$omp barrier @event_delivery_manager.cpp:466
8.02e9 Visits (occ) O 0.00 !$omp barrier @simulation_manager.cpp: 592
4 2.87el5 Bytes transferred (bytes) [0 0.00 !$omp master @simulation_manager.cpp:296 20.00
» [0 0 MPI file operations (occ) O 0.00 !$omp barrier @simulation_manager.cpp:1015
> [l 7.33e5 Computational imbalance (O 0.00 !$omp implicit barrier @simulation_manager.cpp:1047
0.73 Load balance efficiency O 0.01 MPI_Barrier
0.62 Communication efficiency b [0.00 '$omp parallel @node_manager.cpp:882
0.45 Paralle! efficiency b [0 0.00 cleanup 568
Il | Ji Il [All (663552 elements) w2
0.00 4.95e8 (100.00%) 4.95e8| |0.00 17.93 100.00(|0.00 100.00 100.00

T
v

Figure 6: Scalasca analysis report explorer presentation of NEST-5g profile extract from ex-
ecution on 82,944 compute nodes of K computer showing computation time imbalance in the
simulation run phase primary parallel loop (simulation_manager.cpp lines 772 to 1047) ranging
from 131 to 142 seconds on the 663,552 threads.

Figure 8 shows the number of MPI Alltoall instances (visits), bytes transfered (where
incoming=outgoing) and associated communication time for the simulation run and prepare
phases, for each process. For reference, the spike data buffer size (buffer_size_spike_data)
is also shown.

The prepare phase with 6 communication steps for spike data has a relatively small and
slowly increasing number of MPI Alltoall instances, with proportional bytes transfered and
time. In contrast, for the run phase with 340 communication steps for spike data exchange,
there is a marked increase from roughly 360 MPI Al1toall instances to almost double that for
the two largest configurations, with a corresponding increase in time. Notably, the amount of
data transfered in and out of each MPI process also increases, but much more erratically, being
the product of buffer_size_spike_data and the number of MPI A11toall instances.

The doubling of the number of Alltoall calls used to deliver spike events for large con-
figurations is due to additional communication rounds necessitated by the limited number of
spike events that can be stored in the exchange buffer. While the number of local spike events
is roughly constant for each execution configuration, the capacity reserved for each process
in the fixed-size buffer progressively diminishes. While a variable-sized Alltoallv could be
substituted to allow a constant-size spike exchange buffer, it additionally requires vectors of
displacements (which also need to be determined), such that it may be substantially slower.

Ideally, the size of the spike events buffer should be sufficiently large for a single communi-
cation round, as this will be most efficient. If additional memory can’t be allocated for the spike
events exchange buffer, diminished simulation efficiency due to additional communication and

9

0009

POP Ref.No. POP_AR_111 (NEST-5g)

I I I I I
300 -+ simulate
— GatherTargetData::collocate
— GatherTargetData::communicate
GatherTargetData::distribute
Update
— GatherSpikeData::collocate
200 — GatherSpikeData::communicate
— GatherSpikeData::deliver
g | B e
K2
o
=
|_
; /
100}
0 — | | —— : : g |
1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 294,912 663,552
Cores
Figure 7: Simulation run phase time breakdown for process rank 0.
I I
1 500 ...
instances
— E7 bytes
............ — time [s/100]
spike_buffer_data/4k
1 000 ...
500 ..
o === | ook ==

I,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 294,912 663,552
Cores

Figure 8: Usage and impact of MPI Al11toall in run phase (solid) and prepare phase (dashed).

10

POP Ref.No. POP_AR_111 (NEST-5g)

longer simulation times will be the consequence. In such cases, it may be preferable to reduce
the size of the simulation (i.e., the number of neurons and synapses) to ensure that sufficient
spike buffer capacity is provided for single round exchange communication.

9 Summary of observations

Scalability and parallel efficiency of NEST-5g on K computer was investigated with a weak-
scaling test configuration up to the full 82,944 compute nodes (663,552 OpenMP threads).

e Weak scaling performance of the simulation run phase deteriorates progressively, with a
global efficiency of 0.6 to 8,192 cores and below 0.4 for more than 131,072 cores. Both
computation and parallel inefficiencies contribute substantially.

o Computation efficiency drops below 0.8 for 8,192 cores, then stabilises somewhat above
0.6 to the largest execution configuration.

o Parallel efficiency of around 0.7 up to 131,072 cores indicates room for improvement of
both communication and load balance, which appear to alternate in relative importance
at different scales.

o Computation load imbalance leads to significant waiting time for MPI process synchro-
nization in the OpenMP single region where MPI_Alltoall is used for event exchange.

e The largest execution configurations require additional rounds of MPI Al1toall global
communication, resulting in diminished simulation performance.

Recommendations

o Investigate whether a larger spike exchange buffer can be used to avoid additional com-
munication rounds.

o Investigate the origin of the computation load imbalance, perhaps related to the K com-
puter topology, and generally try to improve it.

e Profile the simulation run phase in more depth by manually instrumenting the sub-phases
for update of neurons and population of spike register for target lists, collocation of MPI
send buffer, and delivery of spikes read from MPI buffers via synapses to targets.

o Investigate computation efficiencies of individual cores with hardware counter measure-
ments, e.g., cache performance, vector instructions, branch instructions, etc.

o Compare performance and scalability with other HPC systems, such as IBM Blue Gene/Q.

One or more of these recommendations could be pursued via follow-up POP services, such
as a Performance Plan or Proof-of-Concept prototyping.

11

	Background
	Setup
	Application structure and Focus of Analysis
	Scalability
	Parallel efficiency metrics
	Load balance
	Serial computation
	Communication & Synchronization
	Summary of observations

