
Nekbone performance assessment report

Document Information
Reference Number POP AR 112 (Nekbone)
Author Brian Wylie (JSC)
Contributor(s) Ilya Zhukov (JSC)
Date April 9, 2018

Notices: The research leading to these results has received funding from the European Union's Horizon 2020
research and innovation programme under grant agreement No 676553.

©2018 POP Consortium Partners. All rights reserved.



POP Ref.No. POP AR 112 (Nekbone) CONTENTS

Contents

1 Background 3

2 Setup 3

3 Application structure and Focus of Analysis 5

4 Scalability 6

5 Parallel efficiency metrics 6

6 Load balance 7

7 Serial computation 7

8 Communication & Synchronization 8

9 File I/O 9

10 Summary of observations 10

2



POP Ref.No. POP AR 112 (Nekbone)

1 Background
Applicants Name: Jing Gong
Institution: PDC, KTH, Stockholm, Sweden
Application Name: Nek5000/Nekbone
Programming Language: Fortran & C
Programming Model: MPI+OpenMP (MPI THREAD FUNNELED)
Source Code Available: yes
Performance study: check (audit)
User description: investigation of scalability
Application Description: Nek5000 (http://nek5000.mcs.anl.gov) is an open-source code
for the simulation of incompressible flows. It is widely used in a broad range of applications, in-
cluding the study of thermal hydraulics in nuclear reactor cores, the modeling of ocean currents
and the simulation of combustion in mechanical engines. Nekbone is a proxy mini-app which
captures the basic structure of the extensive Nek5000 software, exposing the principal computa-
tional kernel which solves a standard Poisson equation using the spectral element method with
an iterative conjugate gradient (CG) solver with a simple preconditioner. The CORAL version
of Nekbone 2.3.4.1 is implemented using MPI and OpenMP, with 8-byte floating-point values.
Input data: CORAL data.rea:

.true. = ifbrick ! brick or linear geometry
512 512 1 = iel0,ielN,ielD (per processor) ! range of number of elements per proc.
9 12 3 = nx0,nxN,nxD ! poly. order range for nx1
1 1 1 = npx, npy, npz ! processor distribution in x,y,z
1 1 1 = mx, my, mz ! local element distribution in x,y,z

(Actual processor and local element distributions determined during execution.)
Testcase Description: 1 MPI process with 64 OpenMP threads per compute node.
Machine Description: JUQUEEN IBM Blue Gene/Q with 28,672 compute nodes connected
by proprietary 5D torus interconnect, and GPFS parallel filesystem. Each compute node has
a single IBM PowerPC A2 16-core 1.6 GHz processor, with each core having four hardware
threads, and runs a Linux-based microkernel OS. IBM BG compilers and MPI are provided.
Analysis tools: Scalasca/2.3.1 using Score-P/3.1 with hardware counters PAPI TOT INS and
PAPI TOT CYC.

2 Setup
As described in the CORAL benchmark specification [https://asc.llnl.gov/CORAL-benchmarks/],
a weak-scaling execution configuration is used, where the same amount of spectral elements
(262,144) is given to each MPI process (and partitioned by 64 OpenMP threads). Executions
were done on JUQUEEN with varying numbers of compute nodes. Around 390 MB of memory
is required by each process.

An instrumented version of Nekbone for measurement was built using Score-P with IBM
compiler instrumentation of source routines combined with OpenMP source construct pre-
processing and MPI library interposition. Reported measurements were done employing a
measurement filter consisting of twelve frequently executed short routines, identified by scoring
a preliminary profile analysis report. (Measurement dilation with filtering still roughly 50%.)

3

http://nek5000.mcs.anl.gov
https://asc.llnl.gov/CORAL-benchmarks/


POP Ref.No. POP AR 112 (Nekbone)

Figure 1: Execution timeline of Nekbone execution using 512 MPI processes each with 64
OpenMP threads on JUQUEEN.
The timeline state chart of all 512 MPI processes at the top (with only OpenMP master threads
and worker threads not shown), followed by thread activity charts of MPI rank 0 Master thread
and its OMP thread 1 at bottom showing two pairs of cg iterations (pale green), each preceded
by proxysetupds. While the latter doesn’t involve any threading, each cg iteration has 100
uniform steps employing OpenMP threading (lavender), MPI Allreduce (orange) and MPI non-
blocking point-to-point communication (red).

4



POP Ref.No. POP AR 112 (Nekbone)

3 Application structure and Focus of Analysis
The timeline presentation of Nekbone execution in Figure 11 clearly distinguishes the two cg con-
jugate gradient phases where OpenMP threading is employed, each preceded by proxy_setupds
which does not use threading. The first two cg instances have less computation (nx1=9) and
are correspondingly faster than the second pair (nx1=12). Within the cg region chosen as focus
of analysis (FOA) for auditting, regular MPI point-to-point and collective communication is
performed only by the OpenMP Master thread of each MPI process.

(a) Visits (b) CPU Time [%]

Figure 2: Nekbone execution syntactic structure of cg FOA annotated with call-path visit counts
and proportion of CPU time from execution with 28,672 MPI processes (1,835,008 threads) on
JUQUEEN. (Routines with small execution times filtered.)

Figure 2 shows the cg extract of the Nekbone execution call-tree profile2 from a measurement
on JUQUEEN. The OpenMP parallel region is executed 4 times by each of the 1,835,008
threads, containing two significant parts. The axi routine executed 400 times by each thread
dominates execution time, with MPI non-blocking point-to-point communication performed. On
the other hand, the glsc3i routine contains MPI collective communication (MPI_Allreduce),

1Vampir display quick reference:
https://pop-coe.eu/sites/default/files/pop_files/vampir_display_quickref.pdf

2Cube display quick reference:
https://pop-coe.eu/sites/default/files/pop_files/cube_display_quickref.pdf

5

https://pop-coe.eu/sites/default/files/pop_files/vampir_display_quickref.pdf
https://pop-coe.eu/sites/default/files/pop_files/cube_display_quickref.pdf


POP Ref.No. POP AR 112 (Nekbone)

0 4096 8192 12288 16384 20480 24576 28672
MPI processes (each with 64 OpenMP threads)

0

1e+08

2e+08

3e+08

4e+08

5e+08

F
O

M

Ideal size-up

JUQUEEN

Figure 3: Weak scaling of Nekbone CORAL testcase figure-of-merit (FOM) on JUQUEEN with
64 OpenMP threads per MPI process on each compute node.

plus an expensive critical section. As MPI is used exclusively by Master threads (within
OpenMP master blocks), MPI_THREAD_FUNNELED thread support level is appropriate.

4 Scalability
Figure 3 shows the weak scaling performance of the Nekbone CORAL testcase on JUQUEEN
up to all 28,672 compute nodes. The reported figure-of-merit (FOM) from each execution is
the average aggregate number of floating-point operations per second in the two CG phases.
Scalability is seen to be very close to ideal and in line with the reference values provided by the
CORAL benchmark guidance for BG/Q.

5 Parallel efficiency metrics
Basic parallel efficiency metrics3 are defined where the higher the value (closer to 1.00) then the
better is the efficiency. Load balance efficiency is the ratio of average computation to maximal
computation time. Communication efficiency is the ratio of maximal computation to maximal
executing time. Parallel efficiency is the ratio of the average computation time to the maximal
executing time which is also the product of Load balance and Communication. Computation

3POP standard metrics for parallel performance analysis: https://pop-coe.eu/node/69

6

https://pop-coe.eu/node/69


POP Ref.No. POP AR 112 (Nekbone)

efficiency reflects how total computation time scales, here using the 512-process (half-rack,
midplane) execution as reference.4 Instruction scaling and IPC scaling similarly reflect how the
number of computation instructions executed in total and executed per cycle (IPC) change with
the number of MPI processes. Global efficiency is then the product of Computation efficiency
and Parallel efficiency.

Table 1: Efficiency metrics for Nekbone cg FOA execution on JUQUEEN.

Racks 1
2 1 2 4 8 16 28

Processor distribution 8x8x8 16x8x8 16x16x8 16x16x16 32x16x16 32x32x16 32x32x28
Processes 512 1024 2048 4096 8192 16384 28672
Threads 32768 65536 131072 262144 524288 1048576 1835008

Global efficiency 0.67 0.67 0.67 0.67 0.67 0.67 0.65
- Parallel efficiency 0.67 0.67 0.67 0.67 0.67 0.67 0.65
- - Load balance efficiency 0.96 0.96 0.96 0.96 0.96 0.96 0.95
- - Communication efficiency 0.70 0.70 0.70 0.70 0.70 0.70 0.69
- - - Serialization efficiency 0.70 0.70 0.70 0.70 0.70 0.70 0.69
- - - Transfer efficiency 1.00 1.00 1.00 1.00 1.00 1.00 1.00
- Computation efficiency 1.00 1.00 1.00 1.00 1.00 1.00 0.97
- - Instructions scaling 1.00 1.00 1.00 1.00 1.00 1.00 1.00
- - IPC scaling 1.00 1.00 1.00 1.00 1.00 1.00 0.98

Table 1 gives an overview of the efficiency of the Nekbone weak-scaling testcase executions on
JUQUEEN. It also reports the processor distribution determined by the benchmark execution
for each number of processes. Efficiencies are the same at all scales, reflecting excellent weak
scaling, with only a small degradation for the very largest execution configuration which has
a non-power-of-2 z-processor distribution of 28. Computation efficiency is perfect with no
inefficiency arising from additional work, and Load balance efficiency above 0.95 remains very
good. Transfer efficiency is also perfect, whereas serialization efficiency of 0.70 reflects a constant
amount of synchronization of neighbouring MPI processes and OpenMP threads, such that
Parallel efficiency and Global efficiency are 0.67.

6 Load balance
Load balance efficiency is very good at over 0.95 for the FOA. As each thread is assigned
an identical amount of computation, which is unchanged for configurations employing more
threads when weak scaling, this is to be expected. The small variation by MPI rank relating
to the problem decomposition and partitioning doesn’t change with the number of processes
employed. A small amount of additional work is evident on Master threads, which is where
MPI communication is done.

7 Serial computation
Local computation comprises 54% of the total CPU time, with two-thirds in the axi routine
executed in parallel by all OpenMP threads. Overall instructions executed per cycle for compu-

4Efficiency metrics are essentially unchanged for smaller machine partitions down to a single node-board with
32 processors.

7



POP Ref.No. POP AR 112 (Nekbone)

tation is only 0.17 which is rather low, and only marginally better at 0.21 for axi, but largely
explained by four OpenMP threads executing on a PowerPC A2 core (with separate hardware
threads).

The computational kernel employs a large number of small dense matrix-matrix multipli-
cations. Measurements with additional hardware counters could be used for more in-depth
investigation in further analysis studies.

8 Communication & Synchronization

Figure 4: Scalasca trace analysis report explorer presentation of Nekbone cg extract from
execution with 1,835,008 OpenMP threads on JUQUEEN. Wait states in MPI and OpenMP
communication and synchronization selected from the Time metric hierarchy (left panel) amount
to 45% of total CPU time, 93% of which is attributed roughly equally to five explicit OpenMP
barrier synchronizations and a OpenMP critical section in glsc3i (middle panel). Variation by
thread for these is summarized in the box-plot (right panel).

Communication efficiency of 0.70 is found to derive entirely from serialization or wait states
at process and thread synchronizations. Only 0.4% of total CPU time is used for MPI (done by
master threads of each process), and while most of this time is in point-to-point communica-
tion the majority of waiting time is for the MPI Allreduce collective communication involving
all processes. Non-blocking MPI_Irecv and MPI_Isend communication with all neighbours are
completed with a single MPI_Waitall. OpenMP synchronization costs for all 64 threads amount
to 45% of total CPU time, with the majority of this being for five explicit barrier synchro-
nizations. Whereas implicit barrier synchronizations account for another 2%, lock contention

8



POP Ref.No. POP AR 112 (Nekbone)

for the critical section in the glsc3i routine additionally contributes waiting time of over
8% of the total CPU time.

Figure 5: Point-to-point aggregate message volume communication matrix extract for cg FOA.

Figure 5 shows an extract of the MPI point-to-point communication matrix for one of the
first cg instances, where over 3.3 MiB is exchanged in 100 messages with each of up to six
neighbours and a further 54 kiB exchanged in 100 messages with up to a further twenty ranks
in the vicinity. For the second cg instances, the message volumes are about twice as large, but
with the same number of messages and communication partners.

9 File I/O
The only file operation is reading the small textual configuration file (data.rea, 336 bytes)
during setup by MPI process 0, which is negligible.

9



POP Ref.No. POP AR 112 (Nekbone)

10 Summary of observations
Scalability and parallel efficiency of Nekbone on the JUQUEEN Blue Gene/Q computer was
investigated with a weak-scaling test configuration up to the full 28 racks (28,672 MPI processes,
1,835,008 OpenMP threads). The combination of MPI and OpenMP is able to make effective
use of available memory and hardware threads on each compute node with 64 OpenMP threads
per MPI process.

• Weak scaling performance of the benchmarked cg phase used as focus of analysis is very
good, with only a minor degradation for the very largest execution configuration which
has slightly lower efficiencies.

• Instructions scaling and Transfer efficiency are considered perfect, with very good Com-
putation and Load balance efficiencies.

• Parallel efficiency of 0.67 arising from Serialization efficiency of 0.70 for all scales re-
flects constant numbers of global collective reductions, point-to-point communications
with neighbour processes and synchronizations of OpenMP threads within processes.

• MPI non-blocking point-to-point communication is done efficiently and has a minimal
impact on performance.

• The most significant wait states are associated with 5 explicit OpenMP barrier synchro-
nizations and contention for a lock in an OpenMP critical section. Waiting time for
the MPI collective Allreduce and point-to-point communication executed by OpenMP
master threads are negligible in comparison.

• Use of all four hardware threads of each core benefits performance (and energy-efficiency)
but results in lowered IPC (computational instructions executed per cycle) per thread.

Recommendations

• Investigate whether explicit OpenMP barriers are all necessary for correctness, as they
constitute the most significant inefficiency.

• Investigate computation efficiencies of individual cores with hardware counter measure-
ments, e.g., cache performance, vector instructions, branch instructions, etc. This should
provide insight into the small dense matrix-matrix multiplication kernels.

• Compare performance and scalability with Cray computer systems, where the number
of OpenMP threads per socket is likely to be lower and topological aspects of machine
partitions (and other jobs) can be expected to influence performance.

• Compare performance of the matrix multiplication kernels using SIMD and/or LIBXSMM.

One or more of these recommendations could be pursued via follow-up POP services.

10


	Background
	Setup
	Application structure and Focus of Analysis
	Scalability
	Parallel efficiency metrics
	Load balance
	Serial computation
	Communication & Synchronization
	File I/O
	Summary of observations

