
iPic3D performance assessment report

Document Information
Reference Number POP AR 85
Author Michael Knobloch (JSC)
Contributor(s) Brian Wylie (JSC), Ilya Zhukov (JSC)
Date December 15, 2017

Notices: The research leading to these results has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 676553.

c©2015 POP Consortium Partners. All rights reserved.

POP Ref.No. POP AR 85 CONTENTS

Contents

1 Background 3

2 Application structure and Focus of Analysis 3

3 Scalability 5

4 Load Balance 5

5 Serial performance 7

6 Communication and I/O 7

7 Efficiency 8

8 Summary of observations 9

2

POP Ref.No. POP AR 85

1 Background
Applicants Name: Roman Iakymchuk
Application Name: iPic3D
Programming Language: C++
Programming Model: MPI + OpenMP, one version using MPI THREAD MULTIPLE and
OpenMP tasks
Source Code Available: yes
Application Description: iPic3D is an implicit Particle-in-Cell code for Space Weather ap-
plications. iPIC3D simulates the interaction of Solar Wind and Solar Storms with the Earth’s
Magnetosphere. The magnetosphere is a large system with many complex physical processes, re-
quiring realistic domain sizes and billions of computational particles. In the PIC model, plasma
particles from the solar wind are mimicked by computational particles. At each computational
cycle, the velocity and location of each particle are updated by solving the equation of motion,
the current and charge density are interpolated to the mesh grid, and Maxwell’s equations are
solved.
Input Data: The input used was the ”8-testMagnetosphere3Dsmall-particle.inp” data set,
running on 8 processes with 8 OpenMP threads each.
Performance Study: Performance check (audit)
Machine Description: JURECA cluster at JSC (1872 compute nodes: 2xIntel Xeon E5-2680
v3 Haswell CPUs per node (12 cores, 2.5 GHz, Intel Hyperthreading Technology).
Used Environment: Intel compiler 2017, Intel MPI 2017, CMake, HDF5
Analysis Tools: Score-P, Cube1, Scalasca, Vampir2, PAPI

Due to the high measurement overhead of a fully instrumented run of iPic3D extensive
compile-time filtering was necessary. In this case we filtered all routines that are not on a
call-path to either MPI routines or OpenMP constructs.

A novelty in this audit is the comparison of two versions of iPic3D, the traditional one and
a new version that uses OpenMP tasks in some kernels and implements a new communication
scheme based on MPI THREAD MULTIPLE. Measurement of OpenMP tasks added significant
memory requirements for the measurement system, so we were only able to measure at most 3
iterations. Trace analysis of this version is not possible as the tools used don’t support MPI -
THREAD MULTIPLE (and thus no traces were collected at all). So this report focuses mainly
on the traditional version and highlights the differences for the OpenMP kernels in section 2
and the new communication scheme in Section 6.

2 Application structure and Focus of Analysis
A graphical representation of the traditional application execution is shown in Figure 1. It
clearly shows the typical structure of a scientific application: initialization (∼ 7 s), 20 compute
loop iterations, and finalization.

iPic3D is dominated by two computational kernels, the ParticlesMover consuming 63 %
of the total runtime and CalculateMoments, which is responsible for 18 % of the runtime.
In both kernels the majority of time is spent in OpenMP parallel for loops. The OpenMP
for loop in the ParticlesMover kernel is in the mover PC AoS subroutine and consumes 75 %
of the kernel runtime and 47 % of the total runtime. The sumMoments AoS function in the

1https://pop-coe.eu/sites/default/files/pop_files/cube_display_quickref.pdf
2https://pop-coe.eu/sites/default/files/pop_files/vampir_display_quickref.pdf

3

https://pop-coe.eu/sites/default/files/pop_files/cube_display_quickref.pdf
https://pop-coe.eu/sites/default/files/pop_files/vampir_display_quickref.pdf

POP Ref.No. POP AR 85

Figure 1: Execution timeline of iPic3D with 20 iterations on JURECA. Timeline chart of the 8
processes at top, and function summary chart at bottom.

CalculateMoments kernel contains an OpenMP for loop that consumes 68 % of the kernel
runtime and 12 % of the total runtime. While the ParticlesMover routine itself takes significant
time (10 % of the total runtime), the CalculateMoments contains an OpenMP master region
(in the pad particle capacities function) which requires about a quarter of the runtime of
this kernel (or 4.4 % of the total runime). The main MPI communication is done in CalculateB
and the recommunicate particles until done routine in the ParticlesMover kernel. MPI
communication is responsible for 12.6 % of the runtime. At the end of each iteration the output
is written via MPI I/O in the WriteOutput routine, which requires 6.7 % of the total runtime.
We focus the analysis on these parts of the code.

Figure 2 shows one iteration of iPic3D in detail. While the function summary shows the
same profile, we already see some imbalances in the OpenMP regions (in orange) and especially
in the ParticlesMover kernel on the right half of the picture. We discuss these load balance
issues in detail in Section 4.

In the new version with OpenMP tasks, the tasks are used as outlined in Listing 1. A
task is generated for each iteration of an already parallelized loop. This might be beneficial if
the runtime of different iterations varies significantly, as in that case the distribution of loop
iterations on the hardware threads might be sub-optimal. For this test case at least the usage of
OpenMP tasks decreased performance significantly. We tried 2 alternative versions of the main
kernel, the OpenMP loop of the ParticlesMover for comparison– one with only the parallel
for loop (no tasks) and one with only tasks (no OpenMP for). The fastest version was the
plain OpenMP for version with a runtime of 27.4 s, followed by the one with parallel loop and
tasks with a runtime of 31.3 s. The version using only OpenMP tasks performed poorly with a
total runtime of 98 s. There are more kernels where OpenMP tasks are used in the same way,
removing those would probably be even more beneficial.

4

POP Ref.No. POP AR 85

Figure 2: Execution timeline of iPic3D for the 2nd iteration on JURECA. Timeline chart of the
8 processes at top, and function summary chart at bottom.

#pragma omp p a r a l l e l
#pragma omp for
for (. . .) {

#pragma omp task
{
/∗ l oop i t e r a t i o n ∗/
}
}

Listing 1: Structure of OpenMP task usage in iPic3D

3 Scalability
A scalability analysis was not part of this audit, but should be performed in another POP
service (see section 8).

4 Load Balance
The iPic3D analysis showed two significant load balance issues in the two main computational
kernels. In the main kernel, the ParticlesMover, the OpenMP part is quite balanced with about
20 % variation. The rest of the routine (which has a similar aggregated runtime (including idle
threads) to the OpenMP part) is very badly balanced. The first four processes run 3 times as
long as the other four processes, see Figure 3. This in turn leads to a high MPI waiting time
on those processes, see Section 6.

The other issue occurs in the OpenMP parallel for loop in the CalculateMoments kernel.
As Figure 4 shows, the first and the last two processes take 40 % more time than the 4 processes

5

POP Ref.No. POP AR 85

Figure 3: Cube screenshot showing the load balance issue in the ParticlesMover routine.
Processes 0 to 3 take significantly longer than processes 4 - 7.

in between.

Figure 4: Cube screenshot showing the load balance issue in the CalculateMoments kernel.
Processes 0+1 and 6+7 take significantly longer than processes 2 - 5.

6

POP Ref.No. POP AR 85

5 Serial performance
In the regarded execution of iPic3D, two hardware counters were measured to investigate serial
computational performance:

• PAPI TOT INS: Total instructions completed

• PAPI TOT CYC: Total processor cycles

A common metric to determine the efficient usage of compute resources is IPC, the instruc-
tions per cycle. We can easily calculate that as PAPI TOT INS/PAPI TOT CYC. Figure 5 shows a
profile augmented with the IPC metric.

Figure 5: Profile report of iPic3D enhanced with the IPC metric. It shows a discrepancy in the
main OpenMP loop of the CalculateMoments kernel where four processes have a significantly
higher IPC ratio than the other four processes.

Looking at the four most computational intensive parts we see IPC ratio of 1.1 for both the
ParticlesMover and the embodied OpenMP parallel for loop and a poor IPC ratio of 0.2 for
the OpenMP master region in the CalculateMoments kernel. The most interesting observation
is for the OpenMP loop in the CalculateMoments kernel which shows a load balance issue (see
Section 4). The processes that take less time (processes 2-5) have a significantly higher IPC
ratio of 2.5 than the other four processes, which have an IPC ratio of 1.5. This discrepancy
should be further investigated.

6 Communication and I/O
MPI communication in iPic3D is mainly non-blocking point-to-point communication. The pro-
portion of time spent in MPI communication calls varies from 4 % on rank 0 to 20 % on rank
5. Nearly all of the communication time is waiting time in MPI Waitall and MPI Waitany.

7

POP Ref.No. POP AR 85

Figure 6: Cube screenshot showing the distribution of Late Sender time.

The Late Sender3 metric is one of the performance metrics determined by the Scalasca
trace analyzer. It quantifies the time a process receiving a message is waiting for the sending
process to finish its work and start sending the message. Figure 6 shows the distribution of the
Late Sender metric across the processes. As Figure 2 already shows we see a higher waiting
time on processes 4 - 7, resulting from the load imbalance in the ParticlesMover routine (see
Section 4).

It is difficult to evaluate the effects of the new communication scheme based on MPI -
THREAD MULTIPLE. As in the original case, most time is spent in the various MPI Wait routines
and changes in runtime and load-balancing naturally influence these values. It should be noted
that this new scheme only supports up to 8 threads in powers of two, i.e. one, two, four, and
eight threads. Due to the complexity of the implementation it is very difficult to increase that
number.

iPic3D uses MPI I/O as a parallel I/O paradigm. The WriteOutput is responsible for about
6.7 % of the total runtime in this testcase. However, 66 % of that time is spent in MPI File -
set view, which should become less significant for larger, more realistic test-cases.

7 Efficiency
In the course of the POP audits we defined a set of so-called efficiency metrics to characterize the
application behavior4. These metrics’ values are always between 0 and 100% (or, equivalently,
a value between 0 and 1), the higher the number the better. Load balance is the ratio of average
computation time to maximal computation time. Communication efficiency is the ratio of
maximal computation to maximal execution time. Parallel efficiency is the ratio of average

3https://apps.fz-juelich.de/scalasca/releases/scalasca/2.3/help/scalasca_patterns-2.3.html#
mpi_latesender

4https://pop-coe.eu/node/69

8

https://apps.fz-juelich.de/scalasca/releases/scalasca/2.3/help/scalasca_patterns-2.3.html#mpi_latesender
https://apps.fz-juelich.de/scalasca/releases/scalasca/2.3/help/scalasca_patterns-2.3.html#mpi_latesender
https://pop-coe.eu/node/69

POP Ref.No. POP AR 85

computation time to the maximal executing time, which is also the product of Load balance and
Communication efficiency.

While iPic3D shows a very good Communication efficiency of 98 %, the Load balance effi-
ciency of 46 % is poor, resulting in a Parallel efficiency of just 45 %.

It has to be noted that the calculation of the efficiency metrics is currently imperfect for
hybrid MPI/OpenMP codes. However, they still give a reasonable foundation for further inves-
tigation and subsequent comparison.

8 Summary of observations
The audit of this relatively small testcase of iPic3D on JURECA showed two major load balance
issues in the two main computational kernels. We recommend to continue the analysis process
and focus on the following points in subsequent performance audits or performance plans:

• Investigate load-balance issues in ParticlesMover and CalculateMoments.

• Investigate discrepancy in IPC ratio in CalculateMoments.

• Scalability analysis to investigate iPic3D scaling on a larger number of MPI processes and
OpenMP threads

– Weak scaling, i.e. increase input data with number of processes
– Strong scaling, i.e. keep input data constant

• Investigate serial performance of computational kernels in more detail, e.g. with a thor-
ough hardware counter analysis.

• Investigate influence of I/O on larger problems.

9

	Background
	Application structure and Focus of Analysis
	Scalability
	Load Balance
	Serial performance
	Communication and I/O
	Efficiency
	Summary of observations

