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1 Background
Applicants Name: Alexander Patronis
Institution: University College London, UK (EU H2020 CompBioMed Centre of Excellence)
Application Name: HemeLB (internal development version)
Programming Language: C++
Programming Model: MPI
Source Code Available: yes (GPL license: https://github.com/UCL/hemelb)
Performance study: check (audit)
User description: Assess the overall performance of HemeLB, including a report on scala-
bility and overall parallel efficiency. We have successfully taken the code to 99,600 cores on
ARCHER (at around 7700 sites/rank), but need more information regarding its ability to go
beyond. Other performance tools available on the system failed at a fraction of this scale.
Application Description: HemeLB is an open-source lattice-Boltzmann code for simulation
of large-scale fluid flow in complex geometries, e.g., intracranial blood vessels near aneurysms.
Input data: config.xml + CoW15.gmy (15µs resolution Circle of Willis celebral arterial circle)
Testcase Description: 24 MPI processes per compute node.
Machine Description: ARCHER Cray XC30 at EPCC, comprising 4920 standard (64GB)
and 374 large-memory (128GB) compute nodes, with dual 12-core Intel Xeon E5-2697v2 (Ivy
Bridge) 2.7 GHz processors sharing memory and joined by two QPI links, connected via pro-
prietary Cray Aries interconnect (Dragonfly topology). PrgEnv-gnu using GCC 5.1.0 compilers
(plus boost/1.60).
Analysis tools: Scalasca/2.3.1 using Score-P/3.11, PAPI/5.4.1 (following hardware counters
were collected: PAPI TOT INS, PAPI TOT CYC, PAPI REF CYC, RESOURCE STALLS).
Compiler instrumentation only of HemeLB main, SimulationMaster and GeometryReader (en-
suring that other classes and routines are not instrumented via a selective instrumentation file)
plus MPI, resulting in < 2% measurement dilation compared to uninstrumented executions.

2 Setup
The specified testcase uses HemeLB to simulate hæmodynamics (blood flow) in the Circle of
Willis celebral arterial circle (3 inlets and 6 outlets). The configuration provided for auditing
of strong scaling (fixed overall problem size) specified 10,000 timesteps with status reporting
(of wall time and memory usage) every 100 timesteps. Periodic writing of the simulation data
was disabled as it introduces uncontrollable variability which was considered undesirable for the
initial audit. Example output of executions with 36,000 [1500], 48,000 [2000], 60,000 [2500] and
99,600 [4150] processes [compute nodes] on ARCHER were provided for reference.

Two HemeLB versions were built from the provided sources: one configured using Zoltan and
ParMETIS and one without. Although expected to produce an optimised domain decomposi-
tion, ParMETIS execution was reported to require substantially more time as well as additional
memory when initialising the simulation. Since the provided testcase executed with one MPI
rank per core (i.e., fully allocated compute nodes) requires most of the memory available on
standard 64GB compute nodes, generally it is not possible to use ParMETIS at large scale.

Measurement executions were done on ARCHER with different numbers of compute nodes,
always fully allocated with 24 MPI ranks per node. The full 10,000 timesteps were executed

1A custom configuration of Score-P/3.1 was built without measurement wrappers for MPI Comm rank and
MPI Comm size since these are called so frequently that they cause notable dilation of the Initialise phase.
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with 3,000 [125], 6,000 [250], 12,000 [500], 24,000 [1000], 48,000 [2000] and 96,000 [4000] MPI
processes [compute nodes]. A reduced execution of only 1,000 timesteps was used for preparatory
measurements with 1,000 MPI processes on 42 compute nodes. Due to application memory
requirements for this large testcase, large-memory compute nodes were necessary for executions
with fewer than 500 compute nodes. The version of HemeLB using Zoltan+ParMETIS could
also only be run on these large-memory nodes due to its additional memory requirements.

3 Application structure and Focus of Analysis
HemeLB execution consists of an initialisation phase (Initialise), where the configuration and
geometry files are read and their content distributed, followed by the simulation phase (Simu-
late) which performs the requested number of timesteps. Generally, the latter would be many
thousands (perhaps millions) and take the overwhelming majority of the time, therefore consti-
tuting the primary focus of analysis (FOA). Since the initialisation is a known limiting factor,
it was requested to include this separately in the audit, particularly distinguishing the extra
cost of Zoltan+ParMETIS (GeometryReader::OptimiseDomainDecomposition). Writing of
simulation results was specifically disabled for this initial audit.

The execution timeline of HemeLB with 1000 processes on ARCHER in Figure 1 clearly
distinguishes the 687 seconds of initialisation (dominated by distribution of geometry data)
from the subsequent 1000 time-steps of Simulate (HandleActors) containing lots of point-to-
point communication.2

It is also worth noting that MPI rank 0 has a distinguished role, whereby it doesn’t have
any of the geometry data and therefore monitors rather than shares in the simulation: it spends
almost all of its time in MPI_Waitall. Furthermore, only 4 ranks (numbers 1 to 4) read the
geometry data and distribute it to the others (excluding rank 0).

Figure 2 shows a call-tree profile of Visit counts from a HemeLB execution measurement of
the CoW15 testcase with Zoltan+ParMETIS on ARCHER.3 Figure 2(a) shows main and the
Simulate phase expanded showing RunSimulation, DoTimeStep and HandleActors. The latter
call-paths are visited by each of the 3000 MPI ranks each of the 10000 timesteps. Figure 2(b)
is an extract of the call-tree showing the Initialise phase with OptimiseDomainDecomposition
and RereadBlocks characteristic of when Zoltan+ParMETIS is used. (Master rank 0 is the
only one which doesn’t execute RereadBlocks.)

4 Scalability
Figure 3(a) shows the strong scaling of HemeLB CoW15 from 3000 to 96000 MPI ranks (125 to
4000 ARCHER compute nodes). Initialise time (red) is generally 300 to 400 seconds without
Zoltan+ParMETIS [XZ], and double this with Zoltan+ParMETIS [WZ].4 There seems to be
a marked transition from constant time up to 12000 ranks, followed by steadily increasing
time from 24000 ranks (with an unexplained discontinuity). Simulate time (green) shows good
scaling, and no significant benefit when Zoltan+ParMETIS OptimiseDomainDecomposition is
used.

2Vampir display quick reference:
https://pop-coe.eu/sites/default/files/pop_files/vampir_display_quickref.pdf

3Cube display quick reference:
https://pop-coe.eu/sites/default/files/pop_files/cube_display_quickref.pdf

4Executions of HemeLB with Zoltan+ParMETIS fail during initialisation with 6000 ranks apparently exceed-
ing the available memory of 128 GB per compute node.

4

https://pop-coe.eu/sites/default/files/pop_files/vampir_display_quickref.pdf
https://pop-coe.eu/sites/default/files/pop_files/cube_display_quickref.pdf


POP Ref.No. POP AR 57 (HemeLB)

Figure 1: Execution timeline of HemeLB (with Zoltan+ParMETIS) for 1000 simulation
timesteps of CoW15 testcase execution with 1000 MPI processes on Archer Cray XC30.
Timeline chart of 1000 MPI processes at top, and function time summary chart at bottom.
The first 687 seconds are the Initialise phase in darker green, followed by 240 seconds of the
Simulation phase in lighter green (primarily HandleActors). MPI file operations are yellow,
communicator management is magenta, collective communication is orange, and point-to-point
communication (such as Waitall here) is red.
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(a) Main with Simulate phase expanded. (b) Initialise phase extract.

Figure 2: Call-trees with visit counts of HemeLB CoW15 testcase execution using
Zoltan+ParMETIS with 3000 MPI processes on ARCHER Cray XC30.

The measurement execution times for both Initialise and Simulate very closely match those
of the uninstrumented reference executions provided, indicating little run-to-run variability and
mesaurement dilation < 2%. The only notable exception is the first measurement with 48000
ranks (shaded circles in Figure 3(a)), where Simulate took twice as long and Initialise 45%
longer than the identical measurement done subsequently.

Figure 3(b) shows speed-up relative to 3000 MPI ranks is about a factor of 20 for Simulate
with 96000 ranks, however, Initialise speed-up is at best 2.2 with 24000 ranks.
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(a) Wallclock execution time of different HemeLB configurations with CoW15 testcase. Runs using
Zoltan+ParMETIS are shown as squares, those without as circles. Uninstrumented reference executions
are open circles, whereas measurement executions are filled circles. The shaded circles for 48000 are
for an identical measurement that ran twice as slowly. Dotted line represents ideal scaling of Simulate
phase.
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(b) Speed-up compared to 3000 processes. Solid
line is perfect scaling, dotted line 80% of ideal.
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(c) Range of computation time by process in the
Simulate phase showing extent of imbalance.

Figure 3: HemeLB CoW15 testcase execution time scalability on different numbers of ARCHER
Cray XC30 compute nodes (always with 24 MPI ranks per node), distinguishing the Initialise
and Simulate phases.
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5 Parallel efficiency metrics
Basic parallel efficiency metrics5 are defined where the higher the value (closer to 1.00) then the
better is the efficiency. Load balance is the ratio of average computation to maximal computation
time. Communication efficiency is the ratio of maximal computation to maximal executing time.
Parallel efficiency is the ratio of the average computation time to the maximal executing time
which is also the product of Load balance and Communication.

Table 1: Efficiency metrics for HemeLB CoW15 testcase

without Zoltan+ParMETIS with Z
Compute nodes 125 250 500 1000 2000 4000 500

Processes 3000 6000 12000 24000 48000 96000 12000
Initialise
- Parallel efficiency 0.32 0.34 0.37 0.61 0.56 0.38 0.26
- - Load balance 0.92 0.94 0.94 0.93 0.93 0.91 0.62
- - Communication efficiency 0.35 0.36 0.39 0.66 0.60 0.42 0.42
Instruction scaling 1.00 0.30 0.08
IPC scaling 1.00 0.92 0.89
IPC 0.38 0.35 0.34
Simulate
- Parallel efficiency 0.85 0.84 0.82 0.79 0.73 0.72 0.77
- - Load balance 0.86 0.86 0.84 0.85 0.82 0.76 0.80
- - Communication efficiency 0.99 0.98 0.97 0.93 0.89 0.94 0.97
Instruction scaling 1.00 0.99 0.81
IPC scaling 1.00 0.99 1.09
IPC 1.41 1.40 1.53
Resource stalls 0.55 0.55 0.51

Table 1 gives an overview of the parallel efficiency of the HemeLB CoW15 testcase executions
(with and without Zoltan+ParMETIS for 12000 processes, otherwise only without).

For the Initialise phase, parallel efficiency is generally poor due to poor communication
efficiency, as load balance remains very good at over 90%. With Zoltan+ParMETIS, communi-
cation efficiency is similarly poor and load balance reduced to 62%, such that parallel efficiency
for Initialise drops to a very poor 26% with 12000 processes.

For the Simulate phase, parallel efficiency of 80% or more remains good for up to 24,000
processes, as communication efficiency is very good and load balance also remains good. With
the optimised domain decomposition of Zoltan+ParMETIS, load balance is somewhat lower
and parallel efficiency drops to 77%.

5POP standard metrics for parallel performance analysis: https://pop-coe.eu/node/69
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6 Load balance
Despite the heterogeneity of the four reader/distributor ranks, load balance in the Initialise
phase is considered to be very good.

Rank 0 also provides no contribution to the Simulate computation, but has an diminishing
impact on the load balance of the entire collection of processes. Although reasonably good, the
load balance gets progressively poorer for increasing numbers as it is more challenging to effec-
tively balance the very heterogeneous geometry data. In this regard, use of Zoltan+ParMETIS
also shows no consistent benefit.

Figure 3(c) shows that as the minimum time that any process does computation in Simulate
diverges from the mean, the standard deviation grows from 6% (for 3000) to 11% for (48000).

7 Serial computation
A subset of execution configurations were done including hardware counters for 3000, 12000
and 48000 processes.

For the Simulate phase, the number of non-MPI instructions executed increases slightly,
however, the corresponding instructions per cycle improves from 1.4 to just over 1.5, which
seems like a reasonable instruction-level parallelism. The number of non-MPI instructions
increases much faster during Initialise, resulting in the IPC dropping from 0.38 to 0.34.

Resource stall cycles (as reported by the native RESOURCE_STALLS hardware counter) con-
stitute over 50% of cycles in HandleActors, which is very high and needs further investigation.
The somewhat lower value for 48,000 processes may be due to data fitting better in caches.

8 Communication
Figure 4 shows a breakdown of time in HemeLB phases. For the Initialise phase, there is a
constant amount of mean computation as more processes are used, however, both point-to-
point communication and collective communication tend to be comparatively expensive. Use of
non-blocking sends and receives results in almost all point-to-point communication time being
for MPI_Waitall. While two MPI_Alltoall calls are the most expensive collective communi-
cation at large scale, two MPI_Bcast calls (a total of 1GB incoming for each rank) are also
costly, with lesser contributions from various MPI_Allgather, MPI_Allreduce, MPI_Gather
and MPI_Gatherv calls. Only for the largest scales is file management time (predominantly
MPI_File_open) starting to be notable.

In the Simulate phase, both mean computation time and point-to-point communication time
are progressively reduced, however, the latter is a slowly growing proportion of total time. Three
calls to MPI_Reduce when finalising the simulation contribute negligible collective communica-
tion time. Non-blocking point-to-point communication is used to exchange boundaries with
neighbours, such that almost all of the communication time is for 20,000 MPI_Waitall calls
(two per timestep). The amount of data exchanged increases by more than a factor of three
from a total of 36 TB for 3,000 processes to 115 TB for 96,000 processes.

For executions with 1000 processes, the matrix of aggregate message volume for communi-
cation partners during the Simulate phase when Zoltan+ParMETIS is not employed shown in
Figure 5(b) is quite similar to when Zoltan+ParMETIS is employed in Figure 6(b). During the
Initialise phase, much less communication is done with a different pattern. In Figure 5(a) the
four ranks distributing the geometry data are clearly distinguished.
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Figure 4: Breakdown of time in Initialise and Simulate phases of HemeLB CoW15 execution
(without Zoltan+ParMETIS).

9 File I/O
Simulation data writing was disabled for this initial audit, therefore only the file reading during
HemeLB initialisation is analysed. MPI File operations are used with individual (rather than
collective) reads.

Each rank opens the configuration file (config.xml), and rank 0 reads it in 2–3 seconds.
All ranks also open the geometry data file CoW15.gmy, requiring over 12 seconds when all 96000
processes do so. Ranks 1 to 4 additionally require around 10 seconds to read their share of the
2113 MB geometry data from CoW15.gmy.

Although only a relatively small contribution to the increasing inefficiency of Initialise, it
would seem preferable for either all ranks to read their share of the geometry data directly or
only the ranks which actually read the file should open it.

10 Memory utilisation
ARCHER standard compute nodes have 64 GB, therefore at most 2.67 GB available per process
with 24 MPI ranks per node. Some of this will be reserved by the OS, and some ranks may
have access to more if others on the same compute node require less. Each process’ maximum
memory usage (RSS) is reported by HemeLB, and would need to be aggregated per compute
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(a) Initialise phase [1.12 MiB scale]. (b) Simulate phase [1080 MiB scale].

Figure 5: Communication matrices of point-to-point aggregate message volume for HemeLB
CoW15 testcase execution without Zoltan+ParMETIS with 1000 MPI processes on ARCHER.

(a) Initialise phase [460 MiB scale]. (b) Simulate phase [720 MiB scale].

Figure 6: Communication matrices of point-to-point aggregate message volume for HemeLB
CoW15 testcase execution using Zoltan+ParMETIS with 1000 MPI processes on ARCHER.

node to determine how close to the limit executions are.
The mean process (maximum) memory usage is around 2.3 GB without Zoltan+ParMETIS

[and 2.5 GB or more when Zoltan+ParMETIS is used]. The process with the maximum memory
usage requires 2.43 GB [2.7 GB] with 3000 processes and 2.56 GB for 96,000 processes.

The larger memory requirement when using Zoltan+ParMETIS typically require using the
374 large-memory compute nodes of ARCHER which have 128 GB. Unfortunately combining
them with standard nodes is not supported. Furthermore, executions with 6000 processes (on
250 large-memory compute nodes) failed reporting insufficient memory available.
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11 Summary of observations
Scalability and parallel efficiency of HemeLB on ARCHER Cray XC30 was investigated with
the CoW15 dataset up to 96,000 MPI processes (4000 compute nodes).

• Strong scaling is generally very good for the Simulate phase, with a speed-up by a factor
of 20, whereas the increasingly inefficient Initialise phase quickly becomes a bottleneck.

• Parallel efficiency of 80% is maintained by Simulate to 24,000 processes. Load imbalance
increasingly degrades overall performance as communication efficiency stays high.

• Executions with 48,000 processes (2000 compute nodes, roughly 40% of the entire ARCHER
resource) may be prone to significant run-to-run variability. One instance was encountered
with a slowdown of MPI communication in both Simulate and Initialise by more than a
factor of two (shaded circles in Figure 3(a)), likely due to network interference from other
applications. Very large configurations, such as 96,000 processes (4000 compute nodes,
roughly 80% of ARCHER) may also occassionally be impacted, however, this is perhaps
less likely since they require most of the available resources themselves.

• While the memory available on standard compute nodes of ARCHER is fully used by
HemeLB for the CoW15 testcase, there is generally insufficient additional memory to be
able to incorporate the Zoltan+ParMETIS optimised domain decomposition. Although
2.7 GB was sufficient for 3000 processes [125 compute nodes], with 6000 processes [on 500
128 GB compute nodes] the available memory was apparently exceeded.

• For the smaller scale executions which were possible with Zoltan+ParMETIS incorporated
in this strong scaling test, Simulate showed little performance benefit and even slight
degradation with 12,000 processes as load balance is worse.

Recommendations

• Investigate computation efficiencies of individual processors with hardware counter mea-
surements, e.g., cache performance, vector instructions, branch instructions, etc., to de-
termine the origin of the high resource stalls.

• Investigate why load imbalance is not improved with Zoltan+ParMETIS optimised domain
decomposition, and generally try to improve it.

• Investigate memory allocations, particularly when using Zoltan+ParMETIS, and try to
identify how the memory requirements can be reduced to enable larger simulations.

• Investigate file I/O both reading during Initialise and writing of simulation output.

• Profile the Simulate phase (and/or potentially Initialise) in more depth by instrumenting
more classes/methods.

• Consider whether incorporation of shared-memory multi-threading using OpenMP within
compute nodes would enable more efficient exploitation of available memory by avoiding
replication of data.

One or more of these recommendations could be pursued via follow-up POP services, such
as a Performance Plan or Proof-of-Concept prototyping.
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