
EPW performance assessment report

Document Information
Reference Number POP AR 28
Author Brian Wylie (JSC)
Contributor(s) Ilya Zhukov (JSC)
Date September 5, 2016

Notices: The research leading to these results has received funding from the European Union's Horizon 2020
research and innovation programme under grant agreement No 676553.

©2015 POP Consortium Partners. All rights reserved.



POP Ref.No. POP AR 28 CONTENTS

Contents

1 Background 3

2 Behaviour and syntactic structure 3

3 Focus of analysis (FOA) 4

4 Parallel Efficiency Metrics 6

5 Load Balance 6

6 Serial performance 7

7 Communications 7

8 Summary of observations 7

2



POP Ref.No. POP AR 28

1 Background
Applicants Name: Samuel Poncé
Institution: University of Oxford, UK
Application Name: EPW, version 4.0.0
Programming Language: Fortran90
Programming Model: MPI
Source Code Available: yes (GPL)
Input data: GaN/epw-CB-4q (polar wurtzite gallium nitride crystal with 64 k-points)
Performance study: check (audit)
User description: Currently the EPW code relies on MPI parallelization and scales correctly
up to 200 cores. We would like to improve scalability to 1000 cores and also optimize the code
for improved performance. We would be happy to be have an audit to identify the bottlenecks
in the code and focus on those.
Application Description: EPW (www.epw.org) is an Electron-Phonon Wannier code which
calculates properties related to the electron-phonon interaction using Density Functional Per-
turbation Theory and Maximally Localized Wannier Functions. It is distributed as part of the
Quantum ESPRESSO suite.
Testcase Description: 48 MPI processes on 2 compute nodes.
Machine Description: ARCHER Cray XC30 at EPCC, comprising 4920 compute nodes, with
dual 12-core Intel Xeon E5-2697v2 (Ivy Bridge) 2.7 GHz processors sharing 64GB or memory
and joined by two QPI links, connected via proprietary Cray Aries interconnect (Dragonfly
topology). PrgEnv-intel using Intel 15.0.2.164 compilers.
Analysis tools: Score-P/2.0.2, Scalasca/2.3.1, PAPI/5.4.1 (following hardware counters were
collected: PAPI TOT CYC, PAPI TOT INS, PAPI LD INS, PAPI L1 DCM). Score-P default
(compiler+MPI) instrumentation, combined with runtime measurement filter specifically for
FFTXlib fftw routines.

2 Behaviour and syntactic structure
EPW is executed following several short QE/PW SCF/NSCF (plane-wave (non)self-consistent
field) electronic band structure data preparation steps with the same number of MPI ranks.
The EPW execution consists of two parts: interpolation from coarse Bloch grid to real-space
Wanner [elphon shuffle, etc], followed by interpolation from real-space Wannier to dense
Bloch grid [ephwann shuffle]. In the provided testcase, the initial coarse grid has 64 k-points
and a random fine grid has 231 k-points (whereas more realistic configurations would have many
more).

The execution timeline of EPW in Figure 1 clearly shows two phases and some of their
internal structure. Whereas ephwann is characterised by 10,000 fine-grained iterations (each
with short selfen elec q calls, apart from the final call which collates and writes output files),
elphon starts with the serial createkmap pw2 followed by 12 instances of purely computational
gmap sym alternating with varying numbers (up to 12) of elphon shuffle calls each containing
FFT communication.

MPI collective communication calls are generally preceded by an explicit MPI Barrier
(which unfortunately prevents distinction of MPI Bcast and MPI Allreduce in the timeline
view), however, they indicate various computational load imbalances. During elphon shuffle,
the first 16 MPI ranks spend much less time waiting in MPI Barrier than the remaining 32
ranks (16 to 47) which wait approximately half of the time. Within ephwann shuffle, there’s

3



POP Ref.No. POP AR 28

Figure 1: Execution timeline of EPW GaN testcase execution on two Archer Cray XC30 compute
nodes each with 24 MPI ranks (48 MPI processes).
Timeline chart of 48 MPI processes at top and callstack chart of MPI rank 0 at bottom
shows two phases with ephwann shuffle (pale green) — including selfen elec q (yellow)
and ephwan2blochp (blue) — preceded by createkmap pw2 (cyan) and elphon shuffle (light
green) alternating with gmap sym (pale blue) and related routines. Other application routines
are dark green and MPI routines are shown in red.

a rather more subtle imbalance with the last 9 MPI ranks (39 to 47) spending over one-fifth
of the iteration time waiting, and four MPI ranks (6 to 9) spending the entire time waiting
between ephwann2blochp calls when other ranks execute rgd blk epw2.

3 Focus of analysis (FOA)
A profile showing a simplified call-tree in Figure 2 (left) shows the proportion of time on key
callpaths, with a region profile (right) sorted by inclusive time.

The simulation setup (mostly wann_run) is relatively short and negligible compared to the

4



POP Ref.No. POP AR 28

Figure 2: EPW GaN execution (simplified) syntactic structure showing percentage of total
time for key callpaths (48 MPI process execution on Archer). On right, region profile sorted by
inclusive time.

two significant elphon and ephwann phases, each of which manifests distinct execution char-
acteristics and is worth considering separately. Although ephwann_shuffle is executed within
elphon_shuffle_wrap, it is preferred to extract it and consider the remainder of elphon_shuffle_wrap
(including elphon_shuffle) as elphon+.

Table 1 shows although most of the total execution time was computation, MPI collec-
tive operations accounted for one quarter overall. Only a few percent was actual collective
communication, with the majority being preceded by (explicit) barrier synchronization. While
ephwann_shuffle did more collective communication, and elphon correspondingly less, with
respect to barrier synchronization time the situation is reversed.

Table 1: Percentage of total execution time of EPW’s specific regions (48 MPI processes)

Part of application
Percentage of total execution time, %

Computation MPI collective operations Rest of MPIsynchronization communication
Combined 74 23 3 0
- elphon+ 66 33 1 0
- - createkmap pw2 2 98 0 0
- - elphon shuffle 56 43 1 0
- ephwann shuffle 78 17 4 0
- - ephwann2blochp 71 1 28 0

5



POP Ref.No. POP AR 28

4 Parallel Efficiency Metrics
Basic parallel efficiency metrics are shown in Table 2. The higher the value (closer to 1.00)
then the better is the efficiency. Load balance is the ratio of average computation to maximal
computation time. Communication efficiency is the ratio of maximal computation to maximal
executing time, and also the product of Serialization reflecting loss caused by dependencies
between processes that result in blocked/waiting time and Transfer efficiency which quantifies
loss due to actual data transfer. Parallel efficiency is the ratio of the average computation time
to the maximal executing time which is also the product of Load balance and Communication.

Table 2: Parallel efficiency metrics for EPW and selected regions

Region Load balance Communication Serialization Transfer Parallel
MAIN 0.81 0.91 0.94 0.97 0.74
- elphon+ 0.67 0.99 0.66
- - createkmap pw2 0.02 1.00 1.00 1.00 0.02
- - gmap sym 1.00 1.00 1.00 1.00 1.00
- - elphon shuffle 0.57 0.98 0.99 0.99 0.56
- ephwann shuffle 0.87 0.90 0.94 0.96 0.78
- - ephwan2blochp 0.99 0.71 0.99 0.73 0.71
- - rgd blk epw2 0.81 1.00 0.81

The Table 2 gives an overview of the parallel efficiency of the provided EPW testcase exe-
cution with 48 MPI processes. Computation load balance of 87% in ephwann is only fair, while
in the remainder (elphon+) it is a rather poor 67%. Communication efficiency of 90% is fair
for ephwann, from a combination of blocking/waiting time diminishing serialization efficiency
and transfer inefficiency for copious reductions in ephwan2blochp, but an almost perfect 99%
for the remainder. Overall parallel efficiency of 78% for ephwann is low, and considerably worse
with 66% for the remainder.

Sub-region gmap sym has almost perfectly balanced computation and rgd blk epw2 has
rather imbalanced computation, and neither has any MPI communication, whereas createkmap -
pw2 only has computation on rank 0 with a subsequent MPI barrier.

5 Load Balance
Excellent load balance for gmap_sym and ephwan2blochp routines combines with much poorer
load balance for other parts of the code where most time is spent. createkmap_pw2 and
readgmap are only executed by rank 0, for the worst load balance. Within elphon_shuffle, 32
MPI processes only work half as much as the first 16, due to the distribution of 64 course-grid
k-points.

During ephwann_shuffle, a similar (but less serious) load imbalance arises from the dis-
tribution of the 231 fine-grid k-points over the 48 MPI ranks resulting in the first 39 ranks
having 5 bands to process compared to only 4 for the remaining 9 ranks. Furthermore, four
MPI ranks (6 to 9) are entirely without work, and several others underloaded, presumably due
to the nature of the particular computations in rgd_blk_epw2 and selfen_elec_q. Additional
load imbalance is observed that also varies from iteration to iteration.

6



POP Ref.No. POP AR 28

6 Serial performance
Profile measurements including hardware counters showed an average of 1.75 instructions ex-
ecuted per CPU cycle (overall and within ephwann_shuffle), which seems like a reasonable
instruction-level parallelism. The first level data cache miss rate of 0.022 overall, is consider-
ably better at 0.009 for ephwann_shuffle and rather higher with 0.065 for the remainder.

7 Communications
Only MPI collective (and no point-to-point) operations are used, accounting for 26% of total
time. 87% of this is MPI_Barrier synchronization, which often explicitly precedes collective
communication with MPI_Bcast or MPI_Allreduce.

98% of the almost 200k MPI_Allreduce operations, transfering an average of 34MB per
instance and rank, are part of ephwann (with the vast majority in ephwan2blochp) and take a
total of 288 seconds on average. Of 3565 MPI_Bcast operations at the start of ephwann, taking
a total of 4.3 seconds on average, 1851 have rank 0 as root and within epw_read 1714 use
MPI COMM SELF on each of the other MPI ranks.

While MPI_Allreduce operations are much less common in the elphon phase, MPI_Bcast
operations are more than five times more frequent, transfer three times more bytes and take
correspondingly longer.

8 Summary of observations
From the performance analysis of the EPW GaN testcase it is possible to conclude the following:

• Execution time is defined by two distinct phases, elphon and ephwann, with the latter
requiring roughly twice as long as the former.

• Load balance for the elphon phase seems to be determined by the 64 course-grid k-
points, and for the ephwann phase by the 231 fine-grid k-points (and their respective
characteristics).

• Serial execution of createkmap_pw2 (and to a much lesser extent readgmap) are already
noticable overheads which will impact scalability.

• Run-to-run execution time variation of around 5% is quite high, but likely due to significant
amounts of file I/O.

• Explicit MPI barrier synchronisation is used before collective communications to workaround
issues of some MPI implementations (OpenMPI). If not actually required, these may be
worth eliminating (though unlikely to significantly improve performance).

Recommendations

• Investigate replacing FFTW (from the internal FFTXlib) with DFTI from Intel MKL
(mkl cdft core) to compare performance.

• Investigate the extent to which additional cores can be used effectively. Scaling the pro-
vided GaN test case to 64 cores should be straightforward, but further cores are likely to
idle during elphon. Clarify whether execution with more than 231 cores is meaningful.

7



POP Ref.No. POP AR 28

• To the extent that inherent per-process computational imbalance is unavoidable, it may
be advantageous to ensure that the excesses are distributed as equally as possible over
compute node (and sockets) to most effectively exploit available memory bandwidth.

• Any unnecessary file I/O (such as diagnostics) may be worth eliminating, to potentially
improve performance and reduce variability.

• Quantify file I/O performance (and variability).

8


	Background
	Behaviour and syntactic structure
	Focus of analysis (FOA)
	Parallel Efficiency Metrics
	Load Balance
	Serial performance
	Communications
	Summary of observations

