
2025

STREAmS: portability, performance, maintainability.

Can they coexist?

F. Salvadore

HPC Department, CINECA

Readiness of HPC Extreme-scale
Applications (2nd Edition)
ISC HPC 2025 Workshop
Friday, June 13, 2025, 2:00pm - 6:00pm

2025

• The European Centre of Excellence for Engineering Applications
• https://www.excellerat.eu/

• The EXCELLERAT project is a single point of access for expertise on how data
management, data analytics, visualisation, simulation-driven design and co-
design with high-performance computing (HPC) can benefit engineering.

• funded by EuroHPC

• Application software developed and used within EXCELLERAT:
• AVBP / Alya / CODA / STREAmS / Neko / m-AIA / OpenFOAM

• Use Case 6 - CINECA & Sapienza University team:

• active flow control for drag reduction (DR) of transonic airfoils

• aims to perform DNS at cutting-edge Reynolds number of
uncontrolled and controlled (streamwise‐travelling waves) airfoils

• code is STREAmS-v2.1 using recent curvilinear grid implementation

• team: S. Pirozzoli, G. Soldati, M. Bernardini (Sapienza University of Rome)

EXCELLERAT Center of Excellence

EuroHPC JU is a joint initiative
between the EU, European
countries and private partners to
develop a World Class Supercomg
Ecosystem in Europe.

https://www.excellerat.eu/

2025

• Modern High Performance computing (HPC) are increasingly becoming
heterogenous to achieve exascale computing goals

• Involves using multiple cores of more than one type of processor

• offloading to accelerators not only led to increased speedups but also to energy efficiency

• Top500 list: 9 out of top 10 supercomputers are built utilizing GPU
acceleration:

• 5 AMD, 4 NVIDIA, 1 INTEL GPUs

• Pre-Exascale systems currently in EU, Exascale system coming shortly

• Leonardo (CINECA): NVIDIA A100 GPUs

• LUMI (CSC): AMD MI250X GPUs

• MareNostrum5 (BSC): NVIDIA H100 GPUs

• JUPITER (JSC): NVIDIA GH200 GPUs, under finalization, it will be exascale

• Exascale architectures already in production in US

• El Captain/Frontier, AMD GPUs - Aurora, Intel GPUs

Supercomputers today

*TOP 500, Nov 2022

2025

• Accelerating existing CPU parallel codes using GPU has been the norm in the last
few years

• Classic and new challenges :

• performance: algorithm / implementation / scalability

• sustainability: portability / maintainability

• Portability: ability of code to run on different systems with minimal or no
modifications

• extended meaning: there are code modifications but integrated in a unique platform
architecture

• unfortunately: different programming paradigms still needed to get best performance on
different vendors' devices

• Programming paradigms:

• Multiple Vendors/paradigms (CUDA, HIP): portability?

• Open paradigms (OpenMP, OpenACC): compiler support?

• Performance portability libraries (kokkos, Raja, alpaca): maintenance?

Heterogenous computing challenges

2025

STREAmS solver

aBernardini et al., CPC, 2021
bBernardini et al., CPC, 2023

• Supersonic TuRbulEnt Accelerated NS solver

• Finite-Difference code for DNS of high-speed flows

• Oriented to canonical cases: boundary layer, channel,
compression ramp, airfoil

• Numerical approach

• Kinetic energy preserving (KEP) schemes

• WENO reconstructions for shock capturing

• Explicit third-order low-storage RK scheme for time
advancement

• Immersed boundary approach for complex geometries

• Modern Fortran with object oriented framework

• Multiple backends for CPUs, NVIDIA, AMD and Intel GPUs

• Open-Source GPL 3 license

• https://github.com/STREAmS-CFD/STREAmS-2

• Written in Fortran 77

• CPU parallel only

• Over 15 years of development history

Legacy

• Refactored in 2021

• Written in Fortran 90

• Both CPU and GPU modes supported

• CUDA Fortran for GPU

• Procedurally programmed with ifdef

v1

• Refactored in 2023

• Written in Fortran 2008

• Utilises Modern Fortran OOP features

• Based on a multi-backend/multi-equation approach

v2

• OpenMP, HIP, OpenMP-offload backends added

• Curvilinear grids (including C-mesh for airfoils)

• Open-source extended

• Published in 2025

v2.1

https://github.com/STREAmS-CFD/STREAmS-2/tree/main/examples/curvcha_moser

2025

CUDA Fortran

• Human-
developed

• Suitable for
NVIDIA GPUs

• MPI for
multiple
devices

• Comm/Comp
overlap avail

CPU

• For traditional
CPUs

• Low-memory
version
available

OpenMP

• Hybrid
programming
for CPUs

• Low-memory
version
available

HIP

• For AMD GPUs
and APUs

• Unified
memory
version
available

• Comm/Comp
overlap avail

OpenMP-offload

• Tested on Intel
GPUs and
recently on
AMD GPUs

• Potentially
portable

• Comm/Comp
overlap avail

STREAmS programming paradigms
SUTILS

STREAmS portability library
generates other backends

2025

• How can sutils automatically generate all the backends?
• STREAmS is based on object oriented code architecture

• clear separation (different files) of backend-dependent and backend-
independent parts

• strict programming policies (not hard to follow after code development started)

• sutils is a in-house Python library
• analyze code saving information (mostly) using Python dictionaries

• process/replace/adapt code substantially (for HIP a C++ layer is created)

• produces a perfectly readable code so that possible bugs can be investigated

• major advantage: minimize the effort of domain scientific experts
during code development

sutils

2025

• The core section of sutils employs
Python Mako templating engine to
produce the transformed code
• OpenMP-offload kernel template

• sutils may need to be updated when
major changes of the code are
implemented
• a relatively small update was needed to

support STREAmS v2.1 curvilinear grids
• It is possible to manually define an

input file for sutils containing specific
tuning for kernels, e.g., loop order,
number of parallelized loops

sutils / 2

2025

HPC pilgrimage

Leonardo
CINECA

LUMI
CSC

MareNostrum5
BSC

HUNTER
HLRS

AURORA
ALCF

JEDI (JUPITER)
JSC

C: AMD CPU
G: AMD MI250X GPU

GP: Intel CPU
ACC: NVIDIA H100 GPU

NVIDIA GH200

AMD MI300A APU

DCGP: Intel CPU
Booster: NVIDIA A100 GPU

Intel Data Max 1550 GPU

2025

• Enumerating what is common among systems is
much shorter than what is different
• ssh access

• module system

• Different:
• hardware: devices (GPUs), network,...

• authentication method: public key, password, smallstep,...

• network limitations: VPN on access, cannot exit,...

• software stack: cray, non-cray modules,...

• scheduling and configuration: SLURM, PBS,...

• project monitoring tools

• getting computing time: EuroHPC, national projects,...

Uniquely different

2025

HPC systems and STREAmS paradigms

• STREAmS has predefined makefile configurations to easily prepare all
these HPC environments

2025

• Airfoil case (C-mesh)

• Computational grid:
• 4096 x 286 x 276 ≈ 550M points

• memory occupation around 180GB well below maximum
values for recent systems: done in view of realistic time-
to-solutions and to have a common case

• 8 systems compared:
• 2 CPU based: Intel and AMD

• pure MPI and MPI+OpenMP compared

• 6 GPU based: NVIDIA, AMD, Intel

• CUDA Fortran for NVIDIA, HIP for AMD, OpenMP-offload for Intel

• additional combinations could be addressed
• OpenMP-offload currently under testing for AMD GPUs

(paper submitted to IWOMP 2025)

Reference benchmark case

• Results mostly follow release dates
from different vendors and (more
loosely) device peak performance

2025

• Performed on single GPU devices

• NVIDIA A100, AMD MI250X, Intel 1550

• Profilers: NVIDIA Nsight Compute, AMD Roc profiler, Intel Advisor

• Kernels mostly in the memory bound region

• Simple kernels already close to peak bandwidth

• Other kernels beyond HBM peaks thanks to L1 cache

Hierarchical (L1 and HBM) roofline analysis

HBM

L1

2025

• Performance measured in physically
meaningful cases
• For weak scaling, a set of C-mesh grids

corresponding to increasingly higher Reynolds
• the number of points in each direction is increased

consistently with the needed refinement.
• reference case is C12 and is associated to single-

node case
• for strong scaling C10 case grid is studied

comparing 4, 8, 16, 32 nodes

• Finest mesh for Reynolds=6M case, realistic
value for business jets
• on the right, the green region includes 1000 wall-

normal mesh points and the red region contains
1000x1000 grid points

"Physical" scalability

2025

• Intra-node and inter-node scalings are
good
• intra-CPU scalings limited due to

bandwidth usage

• intra-GPU scaling are good except for Intel
GPUs where there is power capping

• Role of asynchrnous patterns is
different for diverse GPU systems
• always good for NVIDIA and very useful

• Memory occupation is well below the
limits for recent GPU systems but this
is to be closer to realistic time-to-
solutions for high Reynolds

Weak scalings

CPU

2025

• Intra-node and inter-node scalings are
good
• intra-CPU scalings limited due to

bandwidth usage

• intra-GPU scaling are good except for Intel
GPUs where there is power capping

• Role of asynchrnous patterns is
different for diverse systems
• always good for NVIDIA and very useful

• Memory occupation is well below the
limits for recent GPU systems but this
is to be closer to realistic time-to-
solutions for high Reynolds

Weak scalings / 2

GPU
(central scheme)

GPU
(WENO scheme)

2025

Weak scalings / 3
GPU

(central scheme)

2025

• Despite (much) higher decompositions CPU
scalings mostly keep a good scaling

• For GPUs, scaling between 1 and 2 nodes is
very good confirming that the reference case
is not too small to adequately exploit GPU

• For higher decompositions, communication
times limit scalability compared to the ideal
one

• Time-to-solution is a challenge for next future
• increasing grid refinement, reducing time step

implies more iterations needed

Strong scalings CPU

GPU
(central scheme)

GPU
(WENO scheme)

2025

• Workflow
• Automated Workflow Preparation: Initial mesh

and field setup uses a preliminary RANS run;
automation reduces user effort and improves
reproducibility

• Grid
• Enhanced Grid Generation with Construct2D:

Improved C-mesh shaping near trailing edges and
refined control of grid spacing in wall-
normal/tangent directions.

• Support for Large Grid Restarts: Construct2D now
supports restart functionality for very large grids,
improving robustness for long simulations.

• Alternative Grid Refinement Path: Optional sparse
grid generation with post-refinement allows
scalability beyond EXCELLERAT needs.

• Visualization
• Efficient Visualization Options: Slice-based plot3D

output added; Catalyst2 enables in situ
visualization during simulation runtime.

Exascale readiness: pipeline

• Statistics
• Run-Time Statistical Averages: Spanwise and time averages can be

computed during runtime, reducing post-processing for large-scale
runs.

• Run-Time Spectra with Welch Method: Time-spectra calculation
implemented in runtime mode with overlapping windowing strategy.

• Post-Processing Tools: Tools for statistics and spectral analysis are
complete; tailored functionalities developed for airfoil case studies.

• Input/Output
• Checkpointing: Two checkpointing modes: MPI-I/O (single file) or per-

process (preferred for large cases).

• Parallel Grid Input Management: Fully parallel 2D grid handling and
decomposition prior to simulation enable fast, distributed reads.

• Continuous benchmarking
• Basic pipeline: implemented using GitLab+Jacamar+exaCB+JUBE

• Developed in-house tool TEBE: to replace JUBE and simplify
benchmarking automation

Different paths to accomplish the same task
depending on the size of the problem
• some paths implemented for cases with more

than 100 billions of cells

2025

• STREAmS v2.1 implements in situ through Catalyst2
• CONDUIT grid/field management

• Dictionary defines memory/field layouts

• Structured Grid mesh for Cartesian and curvilinear grids

• STREAmS-Catalyst2 from the user side
• no STREAmS source code modification needed

• just input fields, mainly variables to pass and frequency

• Python pipeline script case-dependent

• APS Gallery of Fluid motion award (2022):
• https://gfm.aps.org/meetings/dfd-2022/631f5e75199e4c2da9a94822

• Curvilinear cases under preparation, example available:
• https://github.com/STREAmS-CFD/STREAmS-2/tree/main/examples/curvcha_moser

In situ visualization
STREAmS YouTube channel:
https://www.youtube.com/@streamscfd6365

https://gfm.aps.org/meetings/dfd-2022/631f5e75199e4c2da9a94822
https://github.com/STREAmS-CFD/STREAmS-2/tree/main/examples/curvcha_moser
https://www.youtube.com/@streamscfd6365

2025

• STREAmS is a compressible fluid dynamics solver oriented to high-fidelity simulations of
canonical cases

• Thanks to HPC oriented design of recent versions, 5 programming paradigms are
implemented to fully exploit the diversity of HPC systems

• Portability is ensured by sutils library which allows the developer to keep their standard
way of doing and periodically generate other backends

• Pipeline tools, including in situ visualization, oriented to exascale-size

• Extensive benchmarking performed on 6 clusters, 8 partitions, using a total of 10 backend
combinations shows very good weak scaling up to 1 trillion points using 12K GPUs

• Production runs ongoing on LUMI thanks to 1M node-hours awared by EuroHPC Extreme
Call project

• User guide (with references): https://streams-cfd.github.io/STREAmS-2/

Conclusions

https://streams-cfd.github.io/STREAmS-2/

	Diapositiva 1: STREAmS: portability, performance, maintainability. Can they coexist?
	Diapositiva 2: EXCELLERAT Center of Excellence
	Diapositiva 3: Supercomputers today
	Diapositiva 4: Heterogenous computing challenges
	Diapositiva 5: STREAmS solver
	Diapositiva 6: STREAmS programming paradigms
	Diapositiva 7: sutils
	Diapositiva 8: sutils / 2
	Diapositiva 9: HPC pilgrimage
	Diapositiva 10: Uniquely different
	Diapositiva 11: HPC systems and STREAmS paradigms
	Diapositiva 12: Reference benchmark case
	Diapositiva 13: Hierarchical (L1 and HBM) roofline analysis
	Diapositiva 14: "Physical" scalability
	Diapositiva 15: Weak scalings
	Diapositiva 16: Weak scalings / 2
	Diapositiva 17: Weak scalings / 3
	Diapositiva 18: Strong scalings
	Diapositiva 19: Exascale readiness: pipeline
	Diapositiva 20: In situ visualization
	Diapositiva 21: Conclusions

