

MaXimizing portability and performance of material modelling on EuroHPC clusters

Workshop: Readiness of HPC extreme scale applications

Laura Bellentani, HLST - CINECA l.bellentani@cineca.it

MATERIAL DESIGN AT EXASCALE

LIGHTHOUSE

CODES

Yambo &

siesta

Lleur

.µBig DFI•

DOMAIN EXPERTS & CODE DEVELOPERS

HPC EXPERTS & DATA CENTRES

SIPEARL
The Silicon Pearl

E4

COMPUTER
ENGINEERING

Atos

TECHNOLOGY &

CO-DESIGN PARTNERS

Coe for HPC applications in material science

exploit **frontier HPC**for material science research in strong link with **scientific communities**

complementary

open source

HPC oriented

global impact

READINESS FOR EXASCALE

PORTABILITY

EFFICIENCY

SCALING

OpenACC

Optimized hardware utilization for performance and energy.

Demonstrated ability to scale across thousands of cores.

SEPARATION OF CONCERNS

The performance critical layers must be hidden from the higher level functions

PROPERTY CALCULATOR & HAMILTONIAN BUILDER architecture-agnostic, reusable among codes code 1 module a code ... MSL .. math MSL W code X module Wa hardware architecture module Wb DOMAIN-SPECIFIC/MATHEMATICAL LIBRARIES code-agnostic, externalized, fine-tuned for hardware

STRATEGIES FOR GPU PORTING

STRATEGIES FOR GPU PORTING

THE STATUS

M

Deployed module available

Demonstrated developers installation

Supported architectures tested on similar architecture

Work in progress

configured and executed

January 2025

DIRECTIVE-BASED GPU OFFLOAD IN QE

- First porting with CUDAFortran
- Transition to OpenACC for maintainability
- New backend for AMD GPUs (OpenMP offload)

MPI HIERARCHIES

MPI HIERARCHIES

SPECIALIZED BACKENDS - memory distribution

CrI3- 480 atoms, 3240 electrons, 2 nodes

Driver of FFT distribution optimized for GPUs

- 1. non-blocking communications
- 2. batching for comm/compute overlap
- 3. GPUdirect
- \rightarrow GPU execution outperform by ~7x.

LUMI-G	4 AMD MI250X 64x2 GB HBM	
LEO BOOSTER	4 Nvidia A100 64 GB HBM2	
LEO DCGP	Sapphyre Rapids 112 cores	

F. Ruffino et al.. Procedia Computer Science. 240. 52-60

IMAGES AND POOLS - compute distribution

- prone to overhead (small systems)
- improved data mapping, porting of small routines across versions
- Multi-process-service to improve GPU utilization

IMAGES AND POOLS - compute distribution

- prone to overhead (small systems)
- improved data mapping, porting of small routines across versions
- Multi-process-service to improve GPU utilization

DEVXLIB IN YAMBO

D Sangalli et al 2019 J. Phys.: Condens. Matter 31 325902

- yambo offers fairly independent parallelization layers
- porting to new programming model streamlined by devxlib

linear algebra, FFTs on GPUs, specialized backends, custom kernels. data mapping

DIRECTIVE BASED PROGRAMMING MODEL IN YAMBO

- Scalability reduces for directive-based programming models
- Testing async, device resident data mapping
- Integration of new solvers (cusolvemp)

OFFLOAD VIA ACCELERATED LIBRARIES

OFFLOAD VIA ACCELERATED LIBRARIES

- no support to awareness in ELPA yet (only experimental)
- NCCL version involves only few collectives
- MPS quite effective to cover overhead of CPU staging

NEW BACKENDS FOR COMMUNICATIONS

PLANE WAVE distribution, FFTXlib (All-to-All)

NCCL and HPCX-MPI with improved batching

COMMUNICATION REDESIGN

Band distribution (Allreduce, Allgatherv)

Potential to reduce the impact of Waitall to scale beyond R&G over infiniband But allgather are slow, also over NVLIink

COMMUNICATION REDESIGN

OpenMPI/5 vs HPCX-MPI

FUTURE PERSPECTIVES

IMPROVING SINGLE-HARDWARE USAGE

- emulators for future architectures
- Improved acceleration for small metallic systems

TOWARDS EXTREME-SCALING

- leveraging distributed libraries
- New workflows for exascale
 - improve interfaces and interoperability among codes
 - enable distribution of independent calculations
- HTC with AiiDA

https://doi.org/10.1016/j.cpc.2024.109439.

			CUSOEVERIND		JCALAFACK			
	Nodes	Tasks/Node	Linear Algebra	getrf/getrs	Linear Algebra	SU LA	SU func	
İ	1	4	118.16	73.58	14760.00	124.9x	200.6x	
I	4	4	116.46	61.05	4080.00	35.0x	66.9x	
	16	4	119.72	60.41	1063.00	8.9x	17.6x	