

CENTRE OF EXCELLENCE FOR HPC
ASTROPHYSICAL APPLICATIONS

Enhancing the Energy Efficiency of SPACE Applications

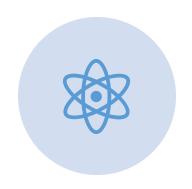
João Barbosa (IT4I@VSB, Czech Republic)

Why Energy Efficiency, Why Now?

- Energy = growing bottleneck in HPC scalability
- 20 MW system → 1 MW saved at 5% gain
- Static tuning = low-effort, high-impact solution
- Applicable without modifying scientific code

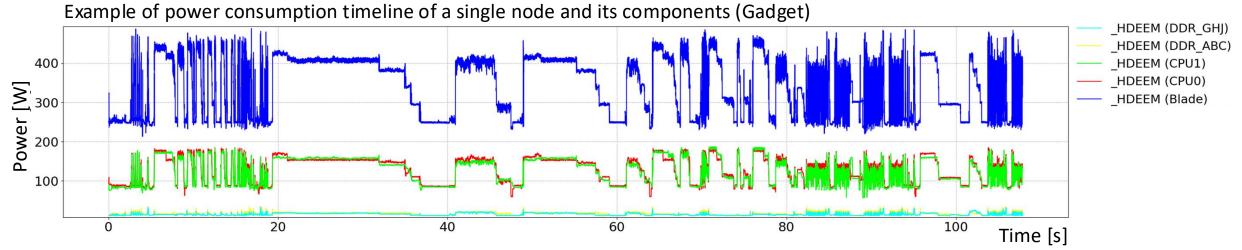
"If one considers that a machine consumes 20MW, energy savings of 5–10% are in orders in megawatts..."

Enhancing the Energy Efficiency of SPACE Apps


SPACE CoE: optimizing HPC energy efficiency

Target: astrophysics applications on modern architectures

Strategy: static frequency tuning using MERIC


Platforms analyzed: NVidia A100, Intel Sapphire Rapids, NVidia Grace

Tools for energy efficiency evaluation

H2020 **READEX** (2015-2018): Complex parallel application has different requirements during execution, so it gives a possibility to be dynamically tuned for energy savings without performance penalty.

MERIC runtime system provides dynamic application tuning

- lightweight & easy to install & easy to use
- C/C++ API and Fortran module
- MPI, OpenMP and CUDA parallelization
- performance and power-aware
- support for a wide range of architectures and power monitoring systems

Our Approach: Static Tuning + MERIC

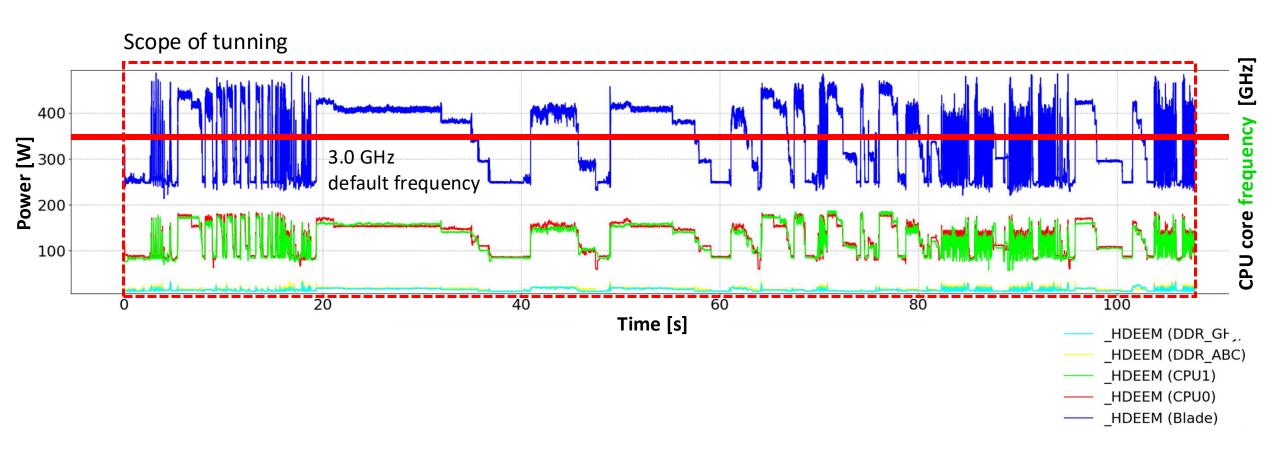
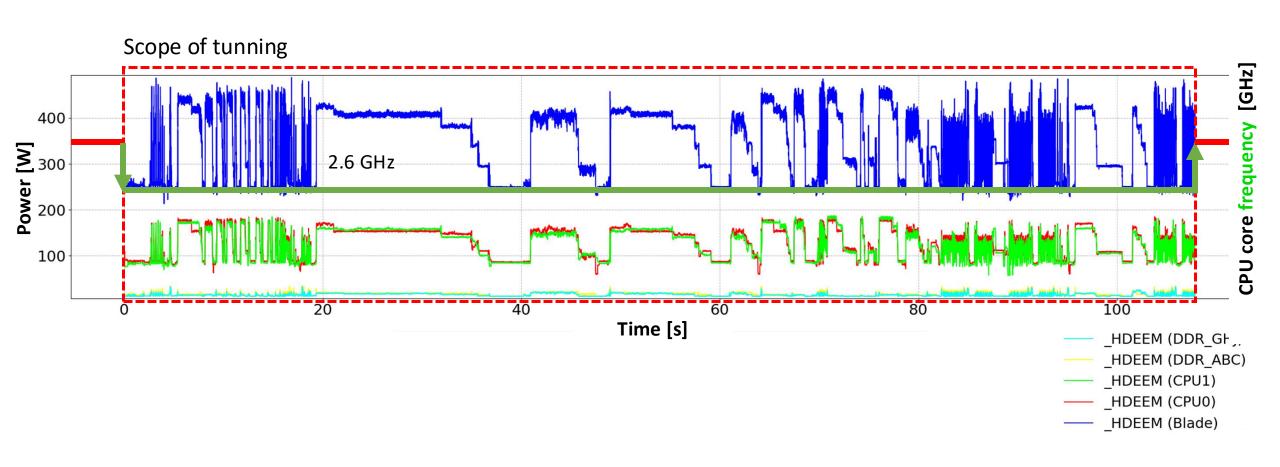

Power Monitor-	Node	Power	Tuned Power Knob
ing	Baseline		
NVMI	600 W		SMF (1.41 - 0.21 GHz)
IN V IVIL	000 W		SMI ⁺ (1.41 - 0.21 GHz)
			CF (2.6 - 0.8 GHz),
Intel RAPL	190 W		UCF (2.5 - 0.8 GHz)
			OCF (2.5 - 0.8 GHz)
DDII			CF (3.3 - 0.9 GHz)
T D C	_		(5.5 - 0.9 GHz)
	NVML	ing Baseline NVML 600 W Intel RAPL 190 W	ing Baseline NVML 600 W Intel RAPL 190 W

Table 4: Hardware architectures, available monitoring systems, and tuned power knobs

- Static tuning = set frequency once at job start
- Metrics tracked: runtime, energy use, FLOPs/Watt
- MERIC: open-source runtime, non-intrusive, SLURM-ready
- Easily applied across nodes & jobs


Static tuning of HPC applications

Static tuning of HPC applications

Example of static tuning on Gadget

uncore [GHz]	1.2	1.4	1.6	1.8	2.0	2.2	2.4		1.2	1.4	$\overline{1.6}$	1.8	2.0	2.2	2.4
1.3	106.64	95.07	89.08	79.95	74.68	71.86	70.56	1.3	8.36	5.04	4.44	2.32	3.94	7.13	12.08
1.5	90.81	77.83	72.3	64.95	59.81	58.26	55.46	1.5	3.14	-1.03	-1.99	-3.04	-1.96	1.89	5.32
1.7	79.73	68.37	59.76	52.62	46.43	44.1	42.27	1.7	1.58	-1.79	-4.29	-5.89	-5.69	-2.82	0.92
1.9	78.24	60.6	50.98	42.75	38.39	36.25	33.26	1.9	3.33	-3.84	-7.02	-9.81	-8.42	-5.59	-2.62
2.1	71.83	52.24	45.23	36.16	31.4	27.74	23.78	2.1	2.43	-5.97	-8	-11.15	-10.56	-8.8	-6.5
2.3	64.06	52.49	39.01	30.3	25.97	22.34	19.35	2.3	·· 1.66···	2.74		-11.82		-9.29	-7.07
2.5	68.28	46.39	37.38	29.44	24.35	17.48	16.44	2.5	8.74	-1.75	-5.89	-10.85	-9.56	-8.88	-5.21
2.6	69.78	47.34	36.22	24.38	20.38	17.05	13.32	2.6	11.55	0.27	-4.26	-9.88	-9.01	-8.1	-6.31
2.7	67.6	42.46	34.08	24.44	17.59	14.37	10.33	2.7	12.16	-1.02	-4.29	-8.45	-9.43	-7.99	-6.66
2.8	65.64	45.95	30.55	24.79	16.31	13.2	7.78	2.8	12.99	2.7	-4.8	-6.45	-8.77	-7.43	-7.43
2.9	63.26	50.33	31.94	22.67	13.99	10.46	7.53	2.9	13.87	7.94	-1.67	-5.83	-8.07	-7.52	-5.47
3	63.02	46.02	27.63	21.36	13.37	8.03	2.73	3	16.57	7.73	-1.85	-4.14	-6.68	-6.94	-6.82
3.1	59.03	45.2	27.36	22.01	12.54	6.57	1.49	3.1	17.16	10.53	0.39	-1.34	-4.83	-5.67	-5.43
3.2	56.33	43.32	28.45	19.56	13.67	5.35	4.67	3.2	19	12.09	3.72	-0.38	-1.55	-3.88	-1.22
3.3	56.62	42.06	34.96	16.65	13.27	4	0.57	3.3	22.21	14.16	10.62	0.2	0.69	-0.96	-2.36

Runtime extension [%]

Energy savings [%]

Example of static tuning on ChaNGa

$\frac{\text{uncore}\left[\text{GHz}\right]}{\text{core}\left[\text{GHz}\right]}$	1.4	1.6	1.8	2	2.2	2.4		1.4	1.6	1.8	2	2.2	2.4
1.3	15.27	13.27	13.25	13.53	12.44	12.78	1.3	-34.22	-33.49	-32.13	-29.62	-26.95	-23.38
1.5	8.39	8.64	7.24	9.82	9.31	8.78	1.5	-35.26	-33.88	-33.12	-28.94	-26.63	-23.78
1.7	4.52	-4.82	-4.15	-5.86	4.12	3.4	1.7	-35.76	-34.11	-32.86	-30.14	-27.82	-25.15
1.9	4.46	4.12	3.81	1.52	3.11	2.35	1.9	-34.2	-32.82	-31.43	-30.26	-26.49	-24.66
2.1	3.4	3.53	3.24	1.58	1.98	1.7	2.1	-31.32	-30.93	-29.53	-28.09	-25.59	-22.7
2.3	2.79	1.22	1.4	1.09	1.12	1.16	2.3	-29.79	-29.32	-27.84	-25.34	-22.3	-19.62
2.5	1.37	1.26	1.01	0.31	0.69	0.8	2.5	-27.84	-26.46	-24.81	-22.87	-19.76	-16.47
2.6	1.8	1.47	1.16	-0.11	-0.2	0.14	2:6	26.18	-25.13	-23.17	-21.81	-18.9	-16.07
2.7	1.51	0.55	0.49	-0.41	1.29	0.34	2.7	-27.64	-26.53	-25	-22.82	-19.46	-16.9
2.8	1.98	1.05	0.9	0.04	0.47	-0.33	2.8	-25.64	-24.33	-22.86	-21.24	-17.74	-15.11
2.9	1.51	0.7	1.19	0.1	0.95	-0.46	2.9	-23.35	-22.06	-20.08	-18.67	-14.79	-12.55
3	0.99	-0.1	-0.43	-1.14	-0.29	-1.37	3	-20.82	-19.92	-18.84	-16.5	-13.34	-10.42
3.1	0.41	-0.21	-0.43	0.92	-0.87	-0.32	3.1	-18.08	-16.88	-14.02	-12.11	-10.83	-6.68
3.2	0.7	-0.09	0.99	-0.24	-1.14	-2.26	3.2	-15.61	-14.17	-12.05	-10.18	-7.93	-6.39
3.3	0.11	-0.55	-0.25	-0.43	-0.33	-1.18	3.3	-12.51	-10.9	-10.86	-7.94	-5.95	-4.4

Runtime extension [%]

Energy savings [%]

Hardware Platforms Tested

- A100 GPU (Karolina): flagship accelerator node
- Sapphire Rapids CPU: tested with DDR & HBM
- Grace CPU: ARM-based, power-efficient designAll nodes profiled using node-wide energy metrics

Hardware	Node hardware	System name
Nvidia A100	$2 \times \text{AMD } 7763 \text{ CPU}, 16 \times \text{DDR4}, 8 \times \text{A}100 \text{ GPU (with)}$	IT4I Karolina
	40 GB HBM2 per GPU)	
Intel Sapphire Rapids	$2 \times \text{CPU}$, $2 \times 64 \text{GB HBM}$, $2 \times 128 \text{ GB (DDR5)}$	IT4I CS
Nvidia Grace CPU	$1 \times \text{superchip} \ (2 \times 72 \text{ CPU cores}) \text{ with } 2 \times 120 \text{ GB}$	IT4I CS
	LPDDR5X	

Scientific Codes & Benchmarks

7 codes: Pluto, OpenGADGET, iPIC3D, RAMSES, BHAC, FIL, ChaNGa

Representative of MHD, N-body, particle & relativistic codes

Benchmarks: real input cases, 1–5 minute runs

Full-node usage for both GPU and CPU tests

Hardware Platform	Nvidia A100 GPU	Sapphire Rapids	Nvidia Grace CPU
		w. DDR and HBM	
Where	IT4I Karolina	IT4I complementary	IT4I complementary
	production system	system	system
Key features	Evaluation of	evaluation of modern	Evaluation of energy
	accelerated platform	x86 CPU and effect of	efficiency of modern
		DDR and HBM	ARM-based CPU to
		memory on energy	have comparison with
		efficiency	x86
Tuning	static tuning of GPU	static tuning of CPU	static tuning of CPU
	streaming	core frequency and	core frequency
	$\operatorname{multiprocessor}$	CPU uncore	
	frequency	frequency	
OpenGadget	yes	yes	yes
Pluto	yes	yes	yes
ChaNGa	yes	yes	yes
iPiC3D	yes	yes	yes
RAMSES	no	yes	yes
FIL	no	yes	yes
BHAC	no	yes	yes

A100 GPU – Modest but Measurable Gains

Set GPU frequency [MHz]	Runtime [s]	Runtime extension	Average power consumption of the GPU [W]	Average power consumption of the CPU [W]	CPUs + GPUs energy consumption [kJ]	Energy savings for GPUs + CPUs	Node energy consumption [kJ]	Compute node energy savings
1410	187.4	100.0%	185.8	118.4	322.9	0.0%	435.3	0.0%
1350	189.9	101.3%	172.7	119.0	307.5	4.8%	421.5	3.2%
1290	192.1	102.5%	160.0	119.6	291.8	9.6%	407.1	6.5%
1230	197.3	105.3%	149.0	119.7	282.4	12.5%	400.8	7.9%
1170	204.3	109.0%	138.9	120.1	276.1	14.5%	398.7	8.4%
1110	211.7	113.0%	129.5	119.4	270.0	16.4%	397.0	8.8%
1050	217.8	116.2%	122.1	119.8	264.8	18.0%	395.5	9.2%
990	225.7	120.4%	118.6	119.5	268.1	17.0%	403.5	7.3%
930	233.8	124.8%	115.9	119.4	272.8	15.5%	413.1	5.1%
870	235.1	125.5%	115.0	119.4	272.6	15.6%	413.7	5.0%
810	250.0	133.4%	111.1	119.1	281.7	12.7%	431.7	0.8%
750	265.3	141.6%	107.6	119.3	291.6	9.7%	450.8	-3.5%
690	280.5	149.7%	104.4	119.2	301.1	6.8%	469.4	-7.8%

• Pluto: 9% savings at 13% runtime overhead

• OpenGADGET: 7%, iPIC3D: 3–5%

Power draw far below TDP (e.g., Pluto ~186W)

Tuning worthwhile even with built-in DVFS

A100 GPU – Modest but Measurable Gains SPACET

	Set GPU frequency [MHz]	Runtime [s]	Runtime extension	Average power consumption of the GPU [W]	Average power consumption of the CPU [W]	CPUs + GPUs energy consumption [kJ]	Energy savings for GPUs + CPUs	Node energy consumption [kJ]	Compute node energy savings	
	1410		100.0%	185.8	118.4	322.9	0.0%	435.3	0.0%	
	1050	100.0	101.0%	470.7	110.0	007.5	1.0%	121.5	0.2%	
Ш	1290	192.1	102.5%	160.0	119.6	291.8	9.6%	407.1	6.5%	
	1230	197.3	105.3%	149.0	119.7	282.4	12.5%	400.8	7.9%	
	1170	204.3	109 0%	138 0	120 1	276 1	14 5%	308 7	8 ለ%	L
	1110	211.7	113.0%	129.5	119.4	270.0	16.4%	397.0	8.8%	
	เบอบ	217.0	110.270	122.1	119.0	۷۵4.0	10.070	აჟა.ა	3.∠ /0	Г
	990	225.7	120.4%	118.6	119.5	268.1	17.0%	403.5	7.3%	
	930	233.8	124.8%	115.9	119.4	272.8	15.5%	413.1	5.1%	
	870	235.1	125.5%	115.0	119.4	272.6	15.6%	413.7	5.0%	
	810	250.0	133.4%	111.1	119.1	281.7	12.7%	431.7	0.8%	
	750	265.3	141.6%	107.6	119.3	291.6	9.7%	450.8	-3.5%	
	690	280.5	149.7%	104.4	119.2	301.1	6.8%	469.4	-7.8%	

• Pluto: 9% savings at 13% runtime overhead

• OpenGADGET: 7%, iPIC3D: 3–5%

Power draw far below TDP (e.g., Pluto ~186W)

Tuning worthwhile even with built-in DVFS

Sapphire Rapids – Tunable & Versatile

- DDR config: 6–14% energy savings with minimal slowdown
- HBM config: better perf/W, smaller tuning window
- ChaNGa: 20% energy savings with 7% longer runtime
- CPU core & uncore tuning is impactfu

					7,11	· .					
CF/UnCF											
[GHz]	0	2,5	2,4	2,2	2	1,8	1,6	1,4	1,2	- 1	0,8
0	100,0%	101,1%	101,1%	101,3%	101,6%	101,5%	101,1%	101,3%	102,2%	103,1%	105,7%
2,6	100,1%	101,5%	101,3%	103,2%	101,5%	102,7%	103,7%	105,4%	107,3%	107,8%	107,7%
2,5	104,6%	103,0%	104,9%	105,5%	104,8%	103,0%	105,4%	109,2%	110,3%	109,4%	107,4%
2,3	112,4%	110,0%	110,1%	109,5%	108,8%	107,7%	108,5%	111,2%	113,0%	112,2%	107,6%
2,1	123,2%	117,5%	116,9%	113,9%	114,0%	113,3%	113,9%	116,5%	120,2%	120,8%	116,0%
1,9	117,7%	124,7%	123,8%	122,1%	124,1%	125,9%	124,6%	124,4%	125,5%	126,4%	122,4%
1,7	132,0%	134,3%	134,0%	133,8%	135,7%	136,7%	134,7%	133,1%	133,7%	134,4%	133,5%
1,5	144,6%	147,8%	144,4%	146,8%	148,5%	150,2%	147,6%	145,4%	145,1%	145,3%	145,2%
1,3	176,3%	165,3%	162,2%	167,0%	165,1%	165,2%	163,3%	163,9%	165,0%	164,3%	166,2%
1,1	187,1%	184,4%	183,1%	188,9%	183,0%	182,6%	181,4%	187,1%	188,3%	186,0%	187,3%

CF/UnCF											
[GHz]	0	2,5	2,4	2,2	2	1,8	1,6	1,4	1,2	1	0,8
0	100 %	102 %	100 %	97 %	91 %	89 %	89 %	90 %	89 %	86 %	84 %
2,6	100 %	101 %	101 %	100 %	96 %	92 %	91 %	90 %	88 %	85 %	84 %
2,5	104 %	103 %	104 %	101 %	97 %	92 %	90 %	89 %	87 %	85 %	82 %
2,3	111 %	110 %	108 %	103 %	98 %	93 %	90 %	88 %	87 %	84 %	80 %
2,1	121 %	112 %	112 %	105 %	100 %	95 %	92 %	90 %	89 %	87 %	83 %
1,9	82 %	113 %	117 %	110 %	105 %	101 %	97 %	93 %	91 %	89 %	85 %
1,7	88 %	115 %	123 %	116 %	111 %	107 %	102 %	97 %	94 %	92 %	89 %
1,5	94 %	122 %	130 %	125 %	119 %	114 %	108 %	103 %	99 %	97 %	94 %
1,3	109 %	133 %	142 %	138 %	129 %	122 %	116 %	112 %	109 %	105 %	104 %
1,1	113 %	145 %	156 %	152 %	139 %	132 %	125 %	124 %	120 %	115 %	113 %

Sapphire Rapids – Tunable & Versatile

- DDR config: 6–14% energy savings with minimal slowdown
- HBM config: better perf/W, smaller tuning window
- ChaNGa: 20% energy savings with 7% longer runtime
- CPU core & uncore tuning is impactfu

					7,117			-			
CF/UnCF											
[GHz]	0	2.5	2.4	2.2	2	1.8	1.6	1.4	1.2	1	0.8
0	100,0%	101,1%	101,1%	101,3%	101,6%	101,5%	101,1%	101,3%	102,2%	103,1%	105,7%
2,6	100,1%	101,5%	101,5%	103,276	101,0%	102,736	103,7%	100,4%	107,376	107,076	107,776
2,5	104,6%	103,0%	104,9%	105,5%	104,8%	103,0%	105,4%	109,2%	110,3%	109,4%	107,4%
2,3	112,4%	110,0%	110,1%	109,5%	108,8%	107,7%	108,5%	111,2%	113,0%	112,2%	107,6%
2,1	123,2%	117,5%	116,9%	113,9%	114,0%	113,3%	113,9%	116,5%	120,2%	120,8%	116,0%
1,9	117,7%	124,7%	123,8%	122,1%	124,1%	125,9%	124,6%	124,4%	125,5%	126,4%	122,4%
1,7	132,0%	134,3%	134,0%	133,8%	135,7%	136,7%	134,7%	133,1%	133,7%	134,4%	133,5%
1,5	144,6%	147,8%	144,4%	146,8%	148,5%	150,2%	147,6%	145,4%	145,1%	145,3%	145,2%
1,3	176,3%	165,3%	162,2%	167,0%	165,1%	165,2%	163,3%	163,9%	165,0%	164,3%	166,2%
1,1	187.1%	184,4%	183,1%	188,9%	183.0%	182,6%	181,4%	187,1%	188,3%	186,0%	187,3%
19.5	1001 111 110	100.00	1000011100	10000000	510000 to 210	Committee and	100 (54 (6)	1001 1100	a partie fact rate	1000000000000	11001 100 110
	101,110	1004/4.70	100,110	100,010	1000,000	Total Co.	101,410	101,130	100,00	1000010	101,011
CF/UnCF	101,110	104,670	100,170	100,076	100,072	100,000	101,410	101,172	100,000	100,010	101,011
	0	2.5	2.4	2.2	2	1.8	1.6	1.4	1.2	1	0.8
CF/UnCF	0									1 86 %	
CF/UnCF [GHz] 0	100 %	2.5	2.4	2.2	2	1.8	1.6	1.4	1.2	1	0.8 84 %
CF/UnCF [GHz] 0	0 100 % 104 %	2.5 102 % 101 %	2.4 100 % 101 %	97 % 100 %	91 % 97 %	1.8 89 % 92 %	1.6 89 % 90 %	1.4 90 % 89 %	1.2 89 % 87 %	86 % 85 %	0.8 84 % 84 %
CF/UnCF GHz 0 2,5 2,3	0 100 % 104 %	2.5 102 %	2,4 100 %	2.2 97 %	91 %	1.8 89 %	1.6 89 %	1,4 90 %	1.2 89 %	86 %	0.8 84 %
CF/UnCF [GHz] 0	0 100 % 104 % 111 % 121 %	2.5 102 % 101 %	2.4 100 % 101 %	97 % 100 %	91 % 97 %	1.8 89 % 92 %	1.6 89 % 90 % 90 % 92 %	1.4 90 % 89 %	1.2 89 % 87 %	86 % 85 % 84 % 87 %	0.8 84 % 82 % 80 % 83 %
CF/UnCF GHz 0 2,5 2,3	0 100 % 104 % 111 % 121 %	2.5 102 % 101 % 103 % 110 %	2.4 100 % 101 % 104 % 108 %	2.2 97 % 100 % 101 % 103 %	91 % 97 % 98 %	1.8 89 % 92 % 93 %	1.6 89 % 90 % 90 %	1,4 90 % 89 % 88 %	1.2 89 % 87 % 87 %	86 % 85 % 84 %	0.8 84 % 84 % 82 % 80 %
CF/UnCF GHz 0 2,5 2,3 2,1	100 % 100 % 104 % 111 % 121 %	2.5 102 % 103 % 110 % 112 %	2.4 100 % 104 % 106 % 112 %	97 % 100 % 101 % 103 % 105 %	91 % 97 % 98 % 100 %	92 % 93 % 95 %	1.6 89 % 90 % 90 % 92 %	1.4 90 % 89 % 86 % 90 %	89 % 87 % 87 % 87 %	86 % 85 % 84 % 87 %	0.8 84 % 82 % 80 % 83 %
CF/UnCF GHz 0 2,5 2,5 2,1 1,9	0 100 % 104 % 111 % 121 % 82 % 88 %	2.5 102 % 103 % 110 % 112 % 113 %	2.4 100 % 101 % 104 % 106 % 112 % 117 %	97 % 100 % 101 % 103 % 105 % 110 %	91 % 97 % 98 % 100 % 105 %	1.8 89 % 92 % 93 % 95 % 101 %	90 % 90 % 90 % 92 % 97 %	1,4 90 % 89 % 86 % 90 % 93 %	1.2 89 % 87 % 87 % 89 % 91 %	86 % 85 % 84 % 87 % 89 %	0.8 84 % 84 % 82 % 80 % 83 % 85 %
CF/UnCF GHz 0 2,5 2,3 2,1 1,9	0 100 % 104 % 111 % 121 % 82 % 88 % 94 %	2.5 102 % 103 % 110 % 112 % 113 % 115 %	2.4 100 % 104 % 106 % 112 % 117 % 123 %	97 % 100 % 101 % 103 % 105 % 110 % 116 %	91 % 97 % 98 % 100 % 105 % 111 %	92 % 92 % 93 % 95 % 101 %	90 % 90 % 90 % 92 % 97 % 102 %	1.4 90 % 89 % 86 % 90 % 93 % 97 %	89 % 87 % 87 % 89 % 91 % 94 %	86 % 85 % 84 % 87 % 89 %	84 % 84 % 82 % 80 % 83 % 85 %

June 13, 2025 15

Sapphire Rapids – Tunable & Versatile

- DDR config: 6–14% energy savings with minimal slowdown
- HBM config: better perf/W, smaller tuning window
- ChaNGa: 20% energy savings with 7% longer runtime
- CPU core & uncore tuning is impactfu

CF/UnCF [GHz]	0	2,5	2,4	2,2	2	1,8	1,6	1,4	1,2	1	0,8
0	100,0%	101,1%	101,1%	101,3%	101,6%	101,5%	101,1%	101,3%	102,2%	103,1%	105,7%
2,6	100,1%	101,5%	101,3%	103,2%	101,5%	102,7%	103,7%	105,4%	107,3%	107,8%	107,7%
2.5	104.6%	103.0%	104.9%	105.5%	104.8%	103.0%	105.4%	109.2%	110.3%	109.4%	107.4%
2,3	112,4%	110,0%	110,1%	109,5%	108,8%	107,7%	108,5%	111,2%	113,0%	112,2%	107,6%
2,1	123,276	117,076	110,876	110,8%	114,076	110,000	11-3,976	119,576	120,276	120,676	119,0%
1,9	117,7%	124,7%	123,8%	122,1%	124,1%	125,9%	124,6%	124,4%	125,5%	126,4%	122,4%
1,7	132,0%	134,3%	134,0%	133,8%	135,7%	136,7%	134,7%	133,1%	133,7%	134,4%	133,5%
1,5	144,6%	147,8%	144,4%	146,8%	148,5%	150,2%	147,6%	145,4%	145,1%	145,3%	145,2%
		ALMON MARK	162,2%	167,0%	165,1%	165,2%	163,3%	163,9%	165,0%	164,3%	166,2%
1,3	176,3%	165,3%	1000 200	THE PARTY OF							
1,3	187,1%	184,4%	183,1%	188,9%	183,0%	182,6%	181,4%	187,1%	188,3%	186,0%	187,3%
								187,1%	188,3%	186,0%	187,3%
								187,1%	188,3%	186,0%	187,3%
1,1								187,1%	188,3%	186,0%	187,3%
1,1 CF/UnCF	187,1%	184,4%	183,1%	188,9%	183,0%	182,6%	181,4%				
1,1 CF/UnCF [GHz]	187,1%	184,4%	183,1%	188,9%	183,0%	182,6%	181,4%	1,4	1,2	1	0,8
1,1 CF/UnCF [GHz]	187,1% 0 100 %	2,5 102 %	183,1% 2,4 100 %	188,9% 2,2 97 %	183,0% 2 91 %	182,6% 1,8	181,4% 1,6 89 %	1,4 90 %	1,2	1 86 %	0,8 84 %
CF/UnCF [GHz] 0 2,6	187,1% 0 100 % 100 %	2,5 102 % 101 %	2,4 100 % 101 %	2,2 97 % 100 %	183,0% 2 91 % 96 %	182,6% 1,8 89 % 92 %	1,6 89 % 91 %	1,4 90 % 90 %	1,2 89 % 88 %	1 86 % 85 %	0,8 84 % 84 %
1,1 CF/UnCF [GHz] 0 2,6	0 100 % 100 % 104 %	2,5 102 % 101 % 103 %	2,4 100 % 101 % 104 %	2,2 97 % 100 % 101 %	183,0% 2 91 % 96 % 97 %	1,8 1,8 89 % 92 % 92 %	1,6 89 % 91 % 90 %	1,4 90 % 90 % 89 %	1,2 89 % 88 % 87 %	1 86 % 85 %	0,8 84 % 84 %
1,1 CF/UnCF [GHz] 0 2,6 2,5 2,3	0 100 % 100 % 104 % 111 %	2,5 102 % 101 % 103 % 110 %	2,4 100 % 101 % 104 % 106 %	2,2 97 % 100 % 101 % 103 %	2 91 % 96 % 97 % 98 %	182,6% 1,8 89 % 92 % 92 % 93 %	1,6 89 % 91 % 90 %	1,4 90 % 90 % 89 % 88 %	1,2 89 % 88 % 87 % 87 %	95 % 85 % 85 % 85 %	0,8 84 % 84 % 82 %
1,1 CF/UnCF [GHz] 0 2,6 2,5 2,3	0 100 % 100 % 104 % 111 %	2,5 102 % 101 % 103 % 110 %	2,4 100 % 101 % 104 % 106 %	2,2 97 % 100 % 101 % 103 %	2 91 % 96 % 97 % 98 %	1,8 89 % 92 % 92 % 93 %	1,6 89 % 91 % 90 % 90 %	1,4 90 % 90 % 89 % 88 %	1,2 89 % 88 % 87 % 87 %	86 % 85 % 85 % 84 %	0,8 84 % 84 % 82 % 80 %
1,1 CF/UnCF [GHz] 0 2,6 2,5 2,3 2,1	187,1% 0 100 % 104 % 111 %	2,5 102 % 101 % 103 % 110 %	2,4 100 % 101 % 104 % 106 %	2,2 97 % 100 % 101 % 103 % 103 %	2 91 % 96 % 97 % 100 %	1,8 89 % 92 % 92 % 93 %	1,6 89 % 91 % 90 % 90 %	1,4 90 % 90 % 89 % 86 %	1,2 89 % 88 % 87 % 87 % 91 %	86 % 85 % 85 % 84 % 87 %	0,8 84 % 84 % 82 % 80 %
1,1 CF/UnCF [GHz] 0 2,6 2,5 2,3 2,1 1,9 1,7	0 100 % 100 % 104 % 111 % 82 % 88 %	2,5 102 % 101 % 103 % 110 % 113 % 115 %	2,4 100 % 101 % 104 % 106 % 112 % 123 %	2,2 97 % 100 % 101 % 103 % 105 % 110 % 116 %	2 91 % 96 % 97 % 100 % 105 % 111 %	1,8 89 % 92 % 92 % 93 % 101 % 107 %	1,6 89 % 91 % 90 % 90 % 97 % 102 %	1,4 90 % 90 % 88 % 88 % 90 % 93 %	1,2 89 % 88 % 87 % 87 % 91 % 94 %	86 % 85 % 85 % 84 % 97 % 89 %	0,8 84 % 84 % 82 % 80 % 65 % 89 %

Grace CPU – Energy Efficiency Leader

- Outperformed all CPUs in MFLOPs/W efficiency
- 8–26% savings with <3% runtime increase
- Up to 30% savings under relaxed runtime constraints
- Ideal for energy-aware workloads

Set CPU frequency [GHz]	Runtime [s]	Runtime extension	Average power consumption of the node [W]	Node energy consumption [kJ]	Compute node energy savings	MFLOPS/W
0.00	69.0	100.0%	617.7	42.6	0.0%	218.1
3.30	71.0	102.9%	613.8	43.6	-2.3%	213.3
3.10	71.0	102.9%	528.8	37.5	11.9%	247.6
2.90	71.0	102.9%	481.4	34.2	19.8%	272.0
2.70	71.0	102.9%	447.0	31.7	25.5%	292.9
2.50	72.0	104.3%	417.1	30.0	29.5%	309.6
2.30	75.0	108.7%	388.0	29.1	31.7%	319,4
2.10	75.0	108.7%	363.7	27.3	36.0%	340.7
1.90	81.0	117.4%	345.1	28.0	34.4%	332.5
1.70	82.0	118.8%	337.3	27.7	35.1%	336.1
1.50	83.0	120.3%	328.0	27.2	36.1%	341.4
1.30	86.0	124.6%	320.4	27.6	35.3%	337.2
1.10	90.0	130.4%	314.1	28.3	33.7%	328.8
0.90	99.0	143.5%	300.6	29.8	30.2%	312.3

June 13, 2025 17

Grace CPU – Energy Efficiency Leader

- Outperformed all CPUs in MFLOPs/W efficiency
- 8–26% savings with <3% runtime increase
- Up to 30% savings under relaxed runtime constraints
- Ideal for energy-aware workloads

	Set CPU frequency [GHz]	Runtime [s]	Runtime extension	Average power consumption of the node [W]	Node energy consumption [kJ]	Compute node energy savings	MFLOPS/W
	0.00	69.0	100.0%	617.7	42.6	0.0%	218.1
	3.30	71.0	102.9%	613.8	43.6	-2.3%	213.3
	3.10	71.0	102.9%	528.8	37.5	11.9%	247.6
	2.90	71.0	102.9%	481.4	34.2	19.8%	272.0
	2.70	71.0	102.9%	447.0	31.7	25.5%	292.9
П	2.50	72.0	104.3%	417.1	30.0	29.5%	309.6
	2.30	75.0	108.7%	388.0	29.1	31.7%	319,4
	2.10	75.0	108.7%	363.7	27.3	36.0%	340.7
	1.90	81.0	117.4%	345.1	28.0	34.4%	332.5
	1.70	82.0	118.8%	337.3	27.7	35.1%	336.1
	1.50	83.0	120.3%	328.0	27.2	36.1%	341.4
	1.30	86.0	124.6%	320.4	27.6	35.3%	337.2
	1.10	90.0	130.4%	314.1	28.3	33.7%	328.8
	0.90	99.0	143.5%	300.6	29.8	30.2%	312.3

Grace CPU – Energy Efficiency Leader

- Outperformed all CPUs in MFLOPs/W efficiency
- 8–26% savings with <3% runtime increase
- Up to 30% savings under relaxed runtime constraints
- Ideal for energy-aware workloads

Set CPU frequency [GHz]	Runtime [s]	Runtime extension	Average power consumption of the node [W]	Node energy consumption [kJ]	Compute node energy savings	MFLOPS/W
0.00	69.0	100.0%	617.7	42.6	0.0%	218.1
3.30	71.0	102.9%	613.8	43.6	-2.3%	213.3
3.10	71.0	102.9%	528.8	37.5	11.9%	247.6
2.90	71.0	102.9%	481.4	34.2	19.8%	272.0
2.70	71.0	102.9%	447.0	31.7	25.5%	292.9
2.50	72.0	104.3%	417.1	30.0	29.5%	309.6
2.30	75.0	108.7%	388.0	29.1	31.7%	319.4
2.10	75.0	108.7%	363.7	27.3	36.0%	340.7
1.90	81.0	117.4%	345.1	28.0	34.4%	332.5
1.70	82.0	118.8%	337.3	27.7	35.1%	336.1
1.50	83.0	120.3%	328.0	27.2	36.1%	341.4
1.30	86.0	124.6%	320.4	27.6	35.3%	337.2
1.10	90.0	130.4%	314.1	28.3	33.7%	328.8
0.90	99.0	143.5%	300.6	29.8	30.2%	312.3

- Grace: best energy efficiency, scalable tuning
- Sapphire Rapids: tunable, flexible with memory options
- A100: efficient baseline, gains still achievable
- Static tuning: 10–20% savings, <3% runtime cost

	Pluto	Open	iPIC3D	RAMSES	BHAC	${\bf FIL}$	ChaNGa
		\mathbf{GADGET}					
Nvidia	-6% / 103%	-7% / 102%	-3% / 104%				
A100	-9% / 113%	-7% / 102%	-5% / 111%				
SPR w.	-9% / 102%	-7% / 102%	-7% / 102%	-6% / 102%	-10% /103%	-6% / 102%	-14% / 103%
DDR	-10% / 106%	-7% / 102%	-9% / 108%	-7% / 104%	-14% /110%	-7% / 103%	-20% / 107%
SPR w.	-4% / 101%	-9% / 94%	-7% / 101%	-7% / 102%	-4% / 99%	-4% / 100%	-12% / 102%
\mathbf{HBM}	-6% / 105%	-11% / 98%	-7% / 101%	-8% / 104%	-4% / 99%	-6% / 104%	-13% / 103%
Grace	-22% /101%	-13% /103%	-9% / 103%	-19% /101%	-26% /103%	-8% / 102%	-16% / 102%
\mathbf{CPU}	-35% /122%	-33% /128%	-29% /126%	-28% /137%	-36% /109%	-20% /117%	-30 % / 110%
Cascade	-6% /102%	-9% /103%	-6% / 101%	-7% /102%	-5% /102%	-3% / 102%	30% /102%
Lake	-12% /126%	-12% /130%	-13% /115%	-11% /123%	-11% /118%	-13% /127%	36% / 110%
D2.2*							

	Pluto
Nvidia	-6% / 103%
A100	-9% / 113%
add	0M / 100M

- Grace: best energy efficiency, scalable tuning
- Sapphire Rapids: tunable, flexible with memory options
- A100: efficient baseline, gains still achievable
- Static tuning: 10–20% savings, <3% runtime cost

	Pluto	Open	iPIC3D	RAMSES	BHAC	FIL	ChaNGa
		\mathbf{GADGET}					
Nvidia	-6% / 103%	-7% / 102%	-3% / 104%				
A100	-9% / 113%	-7% / 102%	-5% / 111%				
SPR w.	-9% / 102%	-7 % / 102%	-7% / 102%	-6% / 102%	-10% /103%	-6% / 102%	-14% / 103%
DDR	-10% / 106%	-7% / 102%	-9% / 108%	-7% / 104%	-14% /110%	-7% / 103%	-20% / 107%
SPR w.	-4% / 101%	-9% / 94%	-7% / 101%	-7% / 102%	-4% / 99%	-4% / 100%	-12% / 102%
$_{ m HBM}$	-6% / 105%	-11% / 98%	-7% / 101%	-8% / 104%	-4% / 99%	-6% / 104%	-13 %/ 103%
Grace	-22 % /101%	-13 % /103%	-9% / 103%	-19% /101%	-26% /103%	-8% / 102%	-16% / 102%
CPU	-337 0 /12270	-337 0 /12870	-2970 /12070	-2070 /13/70	-307 0 / 10970	-2070 /11170	-30 70 / 11070
Cascade	-6% /102%	-9% /103%	-6% / 101%	-7% /102%	-5% /102%	-3% / 102%	30% /102%
Lake	-12% /126%	-12% /130%	-13% /115%	-11% /123%	-11% /118%	-13% /127%	36% / 110%
D2.2*	·	·	·	,	,	·	·

- Grace: best energy efficiency, scalable tuning
- Sapphire Rapids: tunable, flexible with memory options
- A100: efficient baseline, gains still achievable
- Static tuning: 10–20% savings, <3% runtime cost

	Pluto	Open	iPIC3D	RAMSES	BHAC	FIL	ChaNGa
		GADGET					
Nvidia	-6% / 103%	-7% / 102%	-3% / 104%				
A100	-9% / 113%	-7% / 102%	-5% / 111%				
SPR w.	-9% / 102%	-7 % / 102%	-7% / 102%	-6% / 102%	-10% /103%	-6% / 102%	-14% / 103%
DDR	-10% / 106%	-7% / 102%	-9% / 108%	-7% / 104%	-14% /110%	-7% / 103%	-20% / 107%
SPR w.	-4% / 101%	-9% / 94%	-7% / 101%	-7% / 102%	-4% / 99%	-4% / 100%	-12% / 102%
HBM	-6% / 105%	-11% / 98%	-7% / 101%	-8% / 104%	-4% / 99%	-6% / 104%	-13% / 103%
Grace	-22% /101%	-13% /103%	-9% / 103%	-19% /101%	-26% /103%	-8% / 102%	-16% / 102%
CPU	-35% /122%	-33% /128%	-29% /126%	-28% /137%	-36% /109%	-20% /117%	-30% / 110%
Cascade	-6% /102%	-9% /103%	-6% / 101%	-7% /102%	-5% /102%	-3% / 102%	30% /102%
Lake	-12% /126%	- 12% /130%	-13 % /115%	-11% /123%	-11% /118%	-13% /127%	36% / 110%
D2.2*				·			

Practical Relevance for HPC Operations

- 5% savings = 1 MW on a 20 MW system
- Job-level tuning via MERIC + SLURM = no code change
- Immediately deployable across architectures

"...can be applied job-wide using a job scheduler."

Final Thoughts and What's Next

- Static tuning = ready-to-use, impactful optimization method
- Works on diverse codes and hardware platforms
- Future: dynamic tuning with real-time adjustments
- MERIC supports both static and dynamic strategies

Acknowledgement & Disclaimer

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Belgium, Czech Republic, France, Germany, Greece, Italy, Norway, and Spain under grant agreement No 101093441.

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European High Performance Computing Joint Undertaking (JU) and Belgium, Czech Republic, France, Germany, Greece, Italy, Norway, and Spain. Neither the European Union nor the granting authority can be held responsible for them

SPACE

CENTRE OF EXCELLENCE FOR HPC ASTROPHYSICAL APPLICATIONS

Thank you...

João Barbosa (IT4i@VSB) joao.barbosa@vsb.cz

Belgium, Czech Republic, France, Germany, Greece, Italy, Norway, and Spain under grant agreement No 101093441

