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Introduction

About 10% of the energy use in the world is 
spent overcoming turbulent friction

No upper limit in fluid dynamics 
to the size of the systems to be 

studied via simulations

Computational Fluid Dynamics is one of the areas with a clear 
need and great potential to reach exascale



The main goal of CEEC is to address the extreme-scale computing 
challenge to enable the use of accurate and cost-efficient high fidelity 
computational fluid dynamics (CFD) simulations at exascale

• Implement exascale-ready workflows for addressing grand 
challenge scientific problems

• Develop new or improved algorithms that can efficiently exploit 
exascale systems.

• Significantly improve energy efficiency of simulations

• Demonstrate workflows on lighthouse cases relevant for both 
academia and industry

ceec-coe.eu



Portable Spectral Element Framework
• High-order spectral element flow solver

• Incompressible Navier-Stokes equations
• Matrix-free formulation, small tensor products
• Gather-scatter operations between elements

• Modern object-oriented approach (Fortran 2008)

• Various hardware-backends
• CPUs, GPUs down to exotic vector processors and FPGAs

• Device abstraction layer for accelerators (CUDA/HIP/OpenCL)
• Modern Software Engineering (pFUnit, ReFrame, Spack)

> spack install neko+cuda ExtremeFLOW/neko

solver_t

case_t

space_tgs_t

mesh_t

coef_t ax_t field_t

gs_sx_tgs_cpu_t gs_gpu_t

ax_sx_tax_cpu_t ax_gpu_t
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Device Abstraction Layer
How to interface Fortran with accelerators?

• Native CUDA/HIP/OpenCL implementation via C-interfaces
• Device pointers in each derived type

• Abstraction layer hiding memory management
• Hash table associating x with x_d
• Kernels invoked from the object hierarchy 

via C interfaces (𝐴𝑥, vector ops)
• Wrapper functions for each supported accelerator backend
• Templated (CUDA/HIP) or pre-processor macros (OpenCL) 

for runtime parameters
• Auto/runtime tuning based on polynomial order

subroutine field_init(f,…)
type(field_t) :: f
...
call allocate(f%x(…,…,…,…,)
call device_alloc(f%x_d, size)
call device_associate(f%x, f%x_d)

cudaMalloc hipMalloc clCreateBuffer

src/
|
|-- math
| `-- bcknd
| |-- cpu
| |-- device
| | |-- cuda
| | |-- hip
| | `-- opencl
| |-- sx
| `-- xsmm



Gather-Scatter
• Uses indirect addressing and are (mostly) non-injective
• Topology aware optimisations

• Facets (single neighbour), red points
• Injective, vectorizable (always operating on sorted tuples)

• Non facets (arbitrary number of neighbours), green points
• Cannot be made injective, not vectorizable (small amount)

• Multiple levels of overlapping communication and computation
• Overlapping with non-blocking MPI (device aware)
• Asynchronous GPU kernels (neighbours in streams)
• Auto/runtime tuning of all combinations



Large-scale DNS of turbulence with applications in
sustainable shipping
• DNS of the flow around a Flettner rotor at 𝑅𝑒! = 3000 in a turbulent 

boundary layer, for three different spinning ratios 𝛼
• Less than two days on LUMI-G (> two weeks on LUMI-C)

tripping rotating
cylinder

boundary
layer
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Numerical Method 𝑷𝑵 − 𝑷𝑵
• Time integration is performed using an implicit-explicit scheme (BDF𝑘/EXT𝑘)
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• Three velocity solves using CG with block Jacobi preconditioner (fast)

• One Pressure solve using GMRES with an additive overlapping Schwarz preconditioner (expensive)

𝑀$
') = 𝑅$*𝐴$')𝑅$ + ∑%#)+ 𝑅%* <𝐴%')𝑅%, key is to have a scalable coarse grid solver

Coarse grid (linear elements)



Additiver Schwarz Preconditioner on GPUs

• Coarse grid solved using an approximate Krylov solver
• Preconditioned Pipelined Conjugate Gradient with a low, maximum iteration limit

• Low computational efficiency on GPUs
• 𝐴$ is on linear elements, too little data to keep the GPU busy.
• Many small kernels, dominated by kernel launch latency

GPU HW
activity
GPU 
streams

NVTX
host regions

CUDA API
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Task-decomposed Overlapped Preconditioner

• Exploit available task-parallelism
• Launch the left and right part of 𝑀!

"# in parallel on the device
• Launch independent work in parallel from different threads in an OpenMP region
• Launch tasks in separate streams to allow overlap and increase GPU utilization
• Maximise kernel overlap using stream priority to ensure progress in both stream

GPU HW
activity

GPU 
streams

NVTX
host regions

CUDA API

NVTX
host regions
(coarse-solve)

CUDA API
(coarse-solve)
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Extreme-scale High-Fidelity Simulations of 
Turbulent thermal convection

• Exploring the ultimate regime of turbulent Rayleigh-Bénard
convection

• Performance measurements on two of the EuroHPC-JU pre-
exascale supercomputers LUMI and Leonardo

• Close to perfect parallel efficiency with less than 7000 
elements per logical GPU 

• Significantly reducing the smallest required problem size for 
strong scalability limits

• Improvements mainly due to the new overlapped pressure 
preconditioner
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Summary
• Computational Fluid Dynamics is one of the areas with a clear 

need and great potential to reach exascale
• High-order methods are essential on current HPC machines

• Better suited for current hardware, improved accuracy for “free”
• The heterogenous HPC landscape is a nightmare

• Find a suitable level of abstraction
• Use the best tools, mix languages and programming models

• Modern software engineering approaches to ensure portability
• Verification & validation

• Exploit all the available concurrency of the application
• Key ingredient to achieve good strong scalability on LUMI and Leonardo
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