
GROMACS: meeting exascale
portability and performance challenges

ISC Workshop on Readiness of HPC Extreme-scale Applications 
May 16, 2024

Szilárd Páll
pszilard@kth.se

mailto:pszilard@kth.se


Shared under CC BY 4.0.

● Classical MD package

● Large user base: One of the top HPC codes deployed on most clusters
● Open source: LGPLv2

● Open development: code review & bug-tracker: https://gitlab.com/gromacs

– modern dev workflow (mandatory code review for >12 years, tiered CI verification) 

● Codebase: ~1M LOC, C++17

● Focus on high performance:

– efficient algorithms & highly-tuned parallel code

– bottom-up performance oriented design

● Focus on portability:

– portable programming models

– SIMD and GPU portability layers

https://gitlab.com/gromacs


Shared under CC BY 4.0.

Molecular simulation: use-cases

Membrane protein: 105 particles

Cellulose + lignocellulose + water: 107 particles

DNA base-pair opening: 104 particles

Contact line friction &
wetting dynamics
107 -109 particles

Materials MDBio-molecular MD

Nucleation in nano-crystals:
1010 -1012 particles



Shared under CC BY 4.0.

GROMACS parallelization overview
● Multi-level parallelism:

– SIMD / threading / NUMA / async offload / MPI

● Hierarchical parallelization: target each level of hardware 
parallelism

– MPI: SPMD / MPMD; thread-MPI

– OpenMP multithreading + locality optimizations 

– CUDA, OpenCL, SYCL (through GPU abstraction layer)

– SIMD: 14 flavors (SIMD library / abstraction layer)

SM
X0

SM
X1

SM
X2

SM
X3

SM
X4

SM
X5

SM
X6

SM
X7

SM
X8

SM
X9

SM
X1

0

SM
X1

1

SM
X1

2

0

50

100

150

200

250

300

K
C

y
c

le
s

SM
X0

SM
X1

SM
X2

SM
X3

SM
X4

SM
X5

SM
X6

SM
X7

SM
X8

SM
X9

SM
X1

0

SM
X1

1

SM
X1

2

0

50

100

150

200

250

300

0

200

400

600

800

lis
t s

iz
e

lis
t s

iz
e

200

400

600

800

raw pair list
reshaped list

0 100 200 300 4000 100 200 300 400

Regularized 
lists: 
balanced 
execution



Shared under CC BY 4.0.

GROMACS on GPUs: embracing heterogeneity

CPU

GPU

CPU

GPU CPU

GPU

Bonded F PME Integration,
Constraints

Pair
Search Non-bonded F Other

Forces
Reduce
ForcesCPU

CPU

GPU

Force offload parallelization GPU-resident parallelization

Homogeneous scheme

Future: back to partial offload? (APUs)

CPU

GPU

FFTs

Heterogeneous schemes



Shared under CC BY 4.0.

Long-term readiness efforts:
algorithm redesign for modern architectures

i1
i1 i2

i3 i4 jm 

jn

12 13 14 15111098

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3

4
5
6
7

8
9
10
11

4x4 setup on SIMD-16

Cluster pair-interaction 
algorithm for SIMD/SIMT

Accuracy-based automated list 
buffer improves SIMD algorithm 
parallel efficiency

Dual pair list with 
dynamic pruning

Multi-level heterogeneous data 
and task load-balancing: intra-GPU, 
intra-node, inter-node

S
M

X
0

S
M

X
1

S
M

X
2

S
M

X
3

S
M

X
4

S
M

X
5

S
M

X
6

S
M

X
7

S
M

X
8

S
M

X
9

S
M

X
1

0

S
M

X
1

1

S
M

X
1

2

0

50

100

150

200

250

300

K
C

yc
le

s

S
M

X
0

S
M

X
1

S
M

X
2

S
M

X
3

S
M

X
4

S
M

X
5

S
M

X
6

S
M

X
7

S
M

X
8

S
M

X
9

S
M

X
1

0

S
M

X
1

1

S
M

X
1

2

0

50

100

150

200

250

300

0

200

400

600

800

lis
t s

iz
e

lis
t s

iz
e

200

400

600

800

raw pair list
reshaped list

0 100 200 300 4000 100 200 300 400

Regularized 
lists: balanced 
execution



Shared under CC BY 4.0.

Long-term readiness efforts:
algorithm redesign for modern architectures (cont)

Domain decomposition strong scaling:
ethanol 0.72-46M atoms

1 10 100 1000
1

10

100

1000

Simulation size (atoms)

0.72M

2.88M

11M

46M

#nodes (4 GPUs/node)

P
e

rf
o

rm
a

n
ce

 (
n

s/
d

a
y)

Strong scaling with PME and cuFFTmp:
benchPEP-h 12M atoms

1 2 4 8 16 32 64
0

20

40

60

80

100

120

No PME decomp or GPU direct comm

GPU direct comm

PME decomp & GPU direct comm

Node count (4x NVIDIA A100 GPUs)

P
e

rf
o

rm
a

n
ce

 (
n

s/
d

a
y)

Direct GPU communication with proven strong scaling



Shared under CC BY 4.0.

Portable programming models needed!

CPU CPU

GPU

GPU

GPU

GPU

IB IBPLXPLX

CSC Puhti: 2 Intel CPU + 4 
NVIDIA GPU+ NVlink, 2 NIC

JUWELS-Booster: 2 AMD CPUs, 4 NVIDIA 
GPUs, NVlink + 4 NIC

AMD CPU+GPU Exascale
architecture: LUMI, Frontier

JSC Jupiter 4x NVIDIA Grace-
Hopper + Nvlink + 4 NIC

Intel CPU+GPU Exascale 
architecture: Aurora



Shared under CC BY 4.0.

Evolution of GPU hardware & API support

1st heterogeneous 
parallelization:
Force offload 
mode: Nonbonded 
CUDA v4.6 (2013)

OpenCL portablity 
backend 
(AMD / NVIDIA)
NB force offload
v5.1 (2015)

Force offload: 
PME, dual pair list
CUDA & OpenCL
v2016

OpenCL 
improvements & 
Intel support
Force offload: 
bondeds (CUDA)
v2019

CUDA: GPU-
resident mode,
early support for 
direct-GPU comms
v2020

SYCL: early 
support on Intel
Better FEP support 
& improvements 
in  CUDA
v2021

Direct GPU comm:
optimized P2P & 
CUDA-aware MPI;,
PME decomposition 
with HeFFT backend
v2022

GPU-resident SYCL 
on Intel (dpc++) and 
AMD (hipSYCL);
v2022

CUDA-graph
single/multi-GPU,
cuFFTmp support 
v2023

SYCL bonded offload 
and PME 
decomposition with 
HeFFTe (Intel/AMD)
v2023

CUDA-graph opt
post-prune pair-list 
sort in CUDA
Early work on GPU-
initiated comm.
v2024

SYCL AMD 
optimizations
runtime 
improvements
v2024



Shared under CC BY 4.0.

State of the SYCL backend in GROMACS 2024

● Feature support:

– close to parity with CUDA backend (no P2P intra-node comm, WIP graph scheduling)

– primary portability backend to replace OpenCL (broader feature support)

● Hardware support:

– Intel (production): desktop & server

– AMD (production): CDNA and (some) RDNA*

*due to poor ROCm support for some consumer hardware OpenCL is still needed

– NVIDIA (portability): all desktop and server

● Runtime support:

– DPC++ for Intel (NVIDIA and AMD support experimental)

– AdaptiveCPP (hipSYCL) on AMD and NVIDIA

● Library integration: MKL, VkFFT, rocFFT, HeFFTe



Shared under CC BY 4.0.

SYCL for AMD systems: kernels

● Kernels close in performance with 
native 

– some complex kernels slower due 
to compiler issues 

– a few compiler bug / codegen 
workarounds not ported over:

● maintainability / tech debt concerns 

– some kernels faster

● Note: implementations have 
diverged (HIP fork based on 2021-
beta vs upstream 2024) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Average kernel time, relative to AMD HIP fork

NBNXM (F)
PME Spread

PME Solve (F)
PME Gather

Listed Forces (F)
LeapFrog

FFT
Prune

SETTLE
LINCS

X Transform
F Reduce

48
96
384
1536
6144

SYCL ACPP vs HIP fork kernel on Mi250X

https://arxiv.org/pdf/2405.01420



Shared under CC BY 4.0.

SYCL on AMD systems: intra-node performance

● ACPP runtime optimizations bring increasing benefits in scaling

● GROMACS 2024 outperforms HIP fork on 7-8 GCDs

● Scaling limitation with PME: lack of highly optimized distributed 3D-FFT on AMD GPUs

10

5

3

2

It
er

at
io

n 
ra

te
 (m

s 
/ s

te
p)

1066 533 355 266 213 177 152
Thousands of atoms per GCD (PP ranks)

2 3 4 5 6 7 8
Number of GCDs

0

20

40

60

80

100

120

Pe
rf

or
m

an
ce

 (n
s 

/ d
ay

) AdaptiveCpp 0.9.4
AdaptiveCpp 23.10
AdaptiveCpp 23.10, instant
HIP

GROMACS SYCL performance
on Cray EX235a (Dardel)

https://arxiv.org/pdf/2405.01420



Shared under CC BY 4.0.

5
3
2

1

0.8

It
er

at
io

n 
ra

te
 (m

s 
/ s

te
p)

5750 1437 359 89 22 11
Thousands of atoms per GCD

1 4 16 64 256 512
Number of nodes

0

50

100

150

200

250

Pe
rf

or
m

an
ce

 (n
s 

/ d
ay

) AdaptiveCpp 0.9.4, MCN=100
AdaptiveCpp 0.9.4, MCN=5
AdaptiveCpp 0.9.4, MCN=0
AdaptiveCpp 23.10, MCN=100
AdaptiveCpp 23.10, MCN=5
AdaptiveCpp 23.10, MCN=0
AdaptiveCpp 23.10, instant

SYCL on AMD systems: runtime optimizations 

● 2023 focus: collaboration with the AdaptiveCPP team to improve runtime overheads

– coarse grained events

– latency optimizations to deferred execution mode

– instant submission mode: bypass deferred execution

GROMACS SYCL performance
on Cray EX235a (LUMI-G)

https://arxiv.org/pdf/2405.01420



Shared under CC BY 4.0.

SYCL on AMD systems: strong scaling

● Strong scaling of domain decomposition on up to 512 LUMI-G nodes

– parallel efficiency with ACPP instant submission on par with HIP fork

– absolute performance only ~15-20% from HIP fork (mainly due to compute kernels) 

0.6

0.7
0.8

1.0
1.3

2.0

5.0 It
er

at
io

n 
ra

te
 (m

s 
/ s

te
p)

5750 2875 1437 718 359 179 89 44 22 14 11
Thousands of atoms per GCD

1 2 4 8 16 32 64 12
8

25
6

38
4

51
2

Number of nodes

0

50

100

150

200

250

300

Pe
rf

or
m

an
ce

 (n
s 

/ d
ay

) AdaptiveCpp 0.9.4
AdaptiveCpp 23.10
AdaptiveCpp 23.10 (instant)
HIP

MPI 

GROMACS SYCL vs HIP fork scaling 
on Cray EX235a (LUMI-G)

https://arxiv.org/pdf/2405.01420



Shared under CC BY 4.0.

Strong scaling limitation: CPU-initiated communication

...

Nonlocal
non-bonded F

MD iteration

Local non-bonded F         

MPI comm x MPI comm F

CPU

GPU

Reduce F
Local
queue

Non-local queue
(high priority)

Wait for forces

remote
MPI ranks

remote
MPI ranks

Wait Wait Wait Wait

pack pack
un-

pack
un-

pack

Rolling
prune

Clear
buffers

Integ-
ration

CPU forces

Con-
straints

H
2D

 f

Bonded
F

D
2H

 x

● MPI not sufficiently GPU-aware 

● Multiple syncs on critical path

– adds latency overheads to the critical path

– prevents scheduling ahead-of-time (and hiding launch overhead)



Shared under CC BY 4.0.

GPU-initiated communication: long-term

● Fine-grained GPU-initiated communication: NVSHMEM (MPI one-sided)

– reduce latency: 
● avoid CPU-initiated round-trip/wait
● fuse kernels: avoid launch latencies

– make use of the GPU hardware latency hiding abilities

...

MD step

Local & non-local non-bonded  
fused with pack/unpack/communication

SHMEM
put x

SHMEM 
put F

CPU

GPU

Reduce F

remote
PEs

remote
PEs

Rolling
prune

Clear
buffers

Integration
Constraints



Shared under CC BY 4.0.

GPU initiated communication: preliminary performance

● NVSHMEM prototype shows promising 
performance

● current halo-exchange algorithm limiting: 
volume optimized indirect comm

● algorithmic changes needed:

– switch to direct communication

– increase communication concurrency

– estimated performance impact shows 
improvements with NVSHMEM

0 2 4 6 8 10 12 14 16 18
0

100

200

300

400

500

600

700

STMV RF on EOS H100

MPI

NVSHMEM

MPI (no X halo dep.)

NVSHMEM (no X halo dep.)

#nodes

p
er

fo
rm

an
ce

 (n
s/

d
ay

)



Shared under CC BY 4.0.

Acknowledgments
GROMACS

Andrey Alekseenko

Berk Hess

Erik Lindahl

Magnus Lundborg

Mark Abraham (Intel)

Paul Bauer (AMD)

Alan Gray (NVIDIA)

Ania Brown (NVIDIA)

Gaurav Garg (NVIDIA)

Mahesh Doijade (NVIDIA)

Funding

HW / code contribution

AdaptiveCPP (formerly hipSYCL)

Aksel Alpay

–



Shared under CC BY 4.0.

We are hiring!
Researcher in High Performance Computing

at PDC, KTH Royal Institute of Technology

to work on GROMACS and Neko

https://www.kth.se/lediga-jobb/712497?l=en

https://www.kth.se/lediga-jobb/712497?l=en

	Slide 1
	Slide 2
	Slide 6
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

