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● Classical MD package

● Large user base: One of the top HPC codes deployed on most clusters
● Open source: LGPLv2

● Open development: code review & bug-tracker: https://gitlab.com/gromacs

– modern dev workflow (mandatory code review for >12 years, tiered CI verification) 

● Codebase: ~1M LOC, C++17

● Focus on high performance:

– efficient algorithms & highly-tuned parallel code

– bottom-up performance oriented design

● Focus on portability:

– portable programming models

– SIMD and GPU portability layers

https://gitlab.com/gromacs
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Molecular simulation: use-cases

Membrane protein: 105 particles

Cellulose + lignocellulose + water: 107 particles

DNA base-pair opening: 104 particles

Contact line friction &
wetting dynamics
107 -109 particles

Materials MDBio-molecular MD

Nucleation in nano-crystals:
1010 -1012 particles
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GROMACS parallelization overview
● Multi-level parallelism:

– SIMD / threading / NUMA / async offload / MPI

● Hierarchical parallelization: target each level of hardware 
parallelism

– MPI: SPMD / MPMD; thread-MPI

– OpenMP multithreading + locality optimizations 

– CUDA, OpenCL, SYCL (through GPU abstraction layer)

– SIMD: 14 flavors (SIMD library / abstraction layer)
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GROMACS on GPUs: embracing heterogeneity
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Long-term readiness efforts:
algorithm redesign for modern architectures
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Cluster pair-interaction 
algorithm for SIMD/SIMT

Accuracy-based automated list 
buffer improves SIMD algorithm 
parallel efficiency

Dual pair list with 
dynamic pruning

Multi-level heterogeneous data 
and task load-balancing: intra-GPU, 
intra-node, inter-node
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Long-term readiness efforts:
algorithm redesign for modern architectures (cont)

Domain decomposition strong scaling:
ethanol 0.72-46M atoms
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Portable programming models needed!

CPU CPU

GPU

GPU

GPU

GPU

IB IBPLXPLX

CSC Puhti: 2 Intel CPU + 4 
NVIDIA GPU+ NVlink, 2 NIC

JUWELS-Booster: 2 AMD CPUs, 4 NVIDIA 
GPUs, NVlink + 4 NIC

AMD CPU+GPU Exascale
architecture: LUMI, Frontier

JSC Jupiter 4x NVIDIA Grace-
Hopper + Nvlink + 4 NIC

Intel CPU+GPU Exascale 
architecture: Aurora
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Evolution of GPU hardware & API support

1st heterogeneous 
parallelization:
Force offload 
mode: Nonbonded 
CUDA v4.6 (2013)

OpenCL portablity 
backend 
(AMD / NVIDIA)
NB force offload
v5.1 (2015)

Force offload: 
PME, dual pair list
CUDA & OpenCL
v2016

OpenCL 
improvements & 
Intel support
Force offload: 
bondeds (CUDA)
v2019

CUDA: GPU-
resident mode,
early support for 
direct-GPU comms
v2020

SYCL: early 
support on Intel
Better FEP support 
& improvements 
in  CUDA
v2021

Direct GPU comm:
optimized P2P & 
CUDA-aware MPI;,
PME decomposition 
with HeFFT backend
v2022

GPU-resident SYCL 
on Intel (dpc++) and 
AMD (hipSYCL);
v2022

CUDA-graph
single/multi-GPU,
cuFFTmp support 
v2023

SYCL bonded offload 
and PME 
decomposition with 
HeFFTe (Intel/AMD)
v2023

CUDA-graph opt
post-prune pair-list 
sort in CUDA
Early work on GPU-
initiated comm.
v2024

SYCL AMD 
optimizations
runtime 
improvements
v2024
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State of the SYCL backend in GROMACS 2024

● Feature support:

– close to parity with CUDA backend (no P2P intra-node comm, WIP graph scheduling)

– primary portability backend to replace OpenCL (broader feature support)

● Hardware support:

– Intel (production): desktop & server

– AMD (production): CDNA and (some) RDNA*

*due to poor ROCm support for some consumer hardware OpenCL is still needed

– NVIDIA (portability): all desktop and server

● Runtime support:

– DPC++ for Intel (NVIDIA and AMD support experimental)

– AdaptiveCPP (hipSYCL) on AMD and NVIDIA

● Library integration: MKL, VkFFT, rocFFT, HeFFTe
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SYCL for AMD systems: kernels

● Kernels close in performance with 
native 

– some complex kernels slower due 
to compiler issues 

– a few compiler bug / codegen 
workarounds not ported over:

● maintainability / tech debt concerns 

– some kernels faster

● Note: implementations have 
diverged (HIP fork based on 2021-
beta vs upstream 2024) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Average kernel time, relative to AMD HIP fork

NBNXM (F)
PME Spread

PME Solve (F)
PME Gather

Listed Forces (F)
LeapFrog

FFT
Prune

SETTLE
LINCS

X Transform
F Reduce

48
96
384
1536
6144

SYCL ACPP vs HIP fork kernel on Mi250X

https://arxiv.org/pdf/2405.01420



Shared under CC BY 4.0.

SYCL on AMD systems: intra-node performance

● ACPP runtime optimizations bring increasing benefits in scaling

● GROMACS 2024 outperforms HIP fork on 7-8 GCDs

● Scaling limitation with PME: lack of highly optimized distributed 3D-FFT on AMD GPUs
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SYCL on AMD systems: runtime optimizations 

● 2023 focus: collaboration with the AdaptiveCPP team to improve runtime overheads

– coarse grained events

– latency optimizations to deferred execution mode

– instant submission mode: bypass deferred execution

GROMACS SYCL performance
on Cray EX235a (LUMI-G)

https://arxiv.org/pdf/2405.01420
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SYCL on AMD systems: strong scaling

● Strong scaling of domain decomposition on up to 512 LUMI-G nodes

– parallel efficiency with ACPP instant submission on par with HIP fork

– absolute performance only ~15-20% from HIP fork (mainly due to compute kernels) 
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Strong scaling limitation: CPU-initiated communication

...

Nonlocal
non-bonded F

MD iteration

Local non-bonded F         

MPI comm x MPI comm F

CPU

GPU
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● MPI not sufficiently GPU-aware 

● Multiple syncs on critical path

– adds latency overheads to the critical path

– prevents scheduling ahead-of-time (and hiding launch overhead)
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GPU-initiated communication: long-term

● Fine-grained GPU-initiated communication: NVSHMEM (MPI one-sided)

– reduce latency: 
● avoid CPU-initiated round-trip/wait
● fuse kernels: avoid launch latencies

– make use of the GPU hardware latency hiding abilities

...

MD step

Local & non-local non-bonded  
fused with pack/unpack/communication

SHMEM
put x

SHMEM 
put F

CPU

GPU

Reduce F

remote
PEs

remote
PEs

Rolling
prune

Clear
buffers

Integration
Constraints
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GPU initiated communication: preliminary performance

● NVSHMEM prototype shows promising 
performance

● current halo-exchange algorithm limiting: 
volume optimized indirect comm

● algorithmic changes needed:

– switch to direct communication

– increase communication concurrency

– estimated performance impact shows 
improvements with NVSHMEM
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We are hiring!
Researcher in High Performance Computing

at PDC, KTH Royal Institute of Technology

to work on GROMACS and Neko

https://www.kth.se/lediga-jobb/712497?l=en

https://www.kth.se/lediga-jobb/712497?l=en
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